Infrared Technology, Volume. 47, Issue 2, 179(2025)
Cryogenic Refrigeration Technology for Origins Space Telescope System
[2] [2] Gully W, Glaister D S, Hendershott P, et al. Ball aerospace hybrid space cryocoolers[M]//Advances in Cryogenic Engineering, 2008, 53a-53b: 522.
[6] [6] IPAC. Infrared Missions & Surveys[EB/OL][2021-06-07]. https://coolcosmos.ipac.caltech.edu/infraredmission.
[7] [7] Meixner M, Cooray A, Leisawitz D, et al. Origins space telescope mission concept study report[J]. arXiv preprint arXiv: 191206213, 2019.
[8] [8] LEISAWITZ D, AMATUCCI E, ALLEN L, et al. Origins space telescope: trades and decisions leading to the baseline mission concept[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011014.
[9] [9] BATTERSBY C, ARMUS L, BERGIN E, et al. The origins space telescope[J]. Nature Astronomy, 2018, 2(8): 596-599.
[10] [10] Barto A A, Breckinridge J B, Stahl H P. The Origins Space Telescope[M]//Uv/Optical/Ir Space Telescopes and Instruments: Innovative Technologies and Concepts Ix, 2019, 1111513: 184-195.
[11] [11] LEISAWITZ D, AMATUCCI E, ALLEN L, et al. Origins space telescope: baseline mission concept[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011002.
[12] [12] IPAC. OST wavelength coverage[EB/OL][2021-05-20]. https://origins.ipac.caltech.edu/resources.
[13] [13] STAGUHN J, AMATUCCI E, BRADLEY D, et al. Far-infrared imager and polarimeter for the Origins Space Telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011016.
[14] [14] DiPirro M, Shirron P, Kimball M, et al. Cryocooling technologies for the Origins Space Telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011008.
[15] [15] SHIRRON P J, CANAVAN E R, DIPIRRO M J, et al. A continuous low-temperature magnetic refrigerator[J]. AIP Conference Proceedings, 2002, 605(1): 379-382.
[16] [16] DiPirro M, Fantano L. The origins space telescope cryo-thermal architecture[C]//Proc. of SPIE on the Origins Space Telescope Cryo-Thermal Architecture, 2019, 11115: 111150Q.
[17] [17] DiPirro M, Fantano L, D'Asto T, et al. Origins space telescope cryo-thermal system[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011009.
[18] [18] Arenberg J, Pohner J, Petach M, et al. Alternate architecture for the Origins Space Telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011006.
[19] [19] Petach M, Michaelian M, Nguyen T. Modifications to the MIRI cryocooler design to provide significant lift in the 2 K to 4 K range[J]. IOP Conference Series Materials Science and Engineering, 2020, 755: 012018.
[20] [20] CHEN W, MOORE B, PETACH M, et al. Effects of working fluid on performance of 4.5 K JT cooler[J]. IOP Conference Series: Materials Science and Engineering, 2024, 1301(1): 012017.
[22] [22] Glaister D S, Gully W, Ross R, et al. Ball Aerospace 4-6 K Space Cryocooler[C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference: AIP, 823: 632-639.
[23] [23] Dipirro M, Fixsen D, Kogut A, et al. Design of the PIXIE cryogenic system[J]. Cryogenics, 2012, 52(4-6): 134-139.
[25] [25] Coulter D R, Ross R G, Jr, Boyle R F, et al. NASA advanced cryocooler technology development program[C]//Proceedings of SPIE, 2003, 4850: 1020-1028.
[26] [26] Olson J R, Moore M, Champagne P, et al. Development of a space-type 4-stage pulse tube cryocooler for very low temperature[M]//Advances in Cryogenic Engineering, 2006, 51a-51b: 623.
[27] [27] Nast T, Olson J, Roth E, et al. Development of remote cooling systems for low-temperature, space-borne systems[C]//Cryocoolers 2007, 14: 33-40.
[28] [28] Nas Olson J, Roth E,. Yengoyan H, Split multi-stage cryocooler cold head for remote cooling[C]//Cryocoolers, 2024, 23: 147-154.
[29] [29] Zagarola M, Cragin K, Hill R, et al. Efficiency improvements for turbo-brayton cryocoolers for space[C]//Cryocoolers, 2021, 21: 397-404.
[30] [30] Niblock A, Cragin K, Zagarola M. High effectiveness micro tube recuperators for low capacity turbo brayton cryocoolers for space[C]//Cryocoolers, 2021, 21: 405-411.
[31] [31] Cragin K, Zagarola M, McCormick, M, et al. Progress on ultra-miniature 4 K turbines for low temperature turbo-brayton cryocoolers[C]//Cryocoolers, 2024, 23: 287-296.
[32] [32] Yoshida S, Miyaoka M, Kanao K, et al. In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H[J]. Cryogenics, 2018, 91: 27-35.
[33] [33] KANAO K, YOSHIDA S, MIYAOKA M, et al . Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K[J]. Cryogenics, 2017, 88: 143-146.
[34] [34] Takei Y, Yasuda S, Ishimura K, et al. Vibration isolation system for cryocoolers of soft x-ray spectrometer on-board ASTRO-H (Hitomi)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(1): 011216.
[35] [35] Sato Y, Shinozaki K, Sugita H, et al. Development of mechanical cryocoolers for the cooling system of the Soft X-ray Spectrometer onboard Astro-H[J]. Cryogenics, 2012, 52(4-6): 158-64.
[36] [36] Otsuka K, Kanao K, Tsunematsu S, et al. Improvement of micro-vibration of a two-stage Stirling cryocooler[J]. Cryogenics, 2020, 11(1): 9.
[38] [38] NARASAKI K, TSUNEMATSU S, OTSUKA K, et al. Lifetime test and heritage on-orbit of SHI coolers for space use[J]. Cryocoolers, 2016, 19: 613-622.
[39] [39] NARASAKI K SATO Y, TANAKA K, SUGITA H, et al. Lifetime test of the 4 K Joule-Thomson cryocooler[J]. Cryogenics, 2021, 116: 103306.
[40] [40] KANAO K, NARASAKI K, TSUNEMATSU S, et al. Overview of Sumitomo coolers and Dewars for space use[C]//SPIE, Defense + Security, 2016, 9821: 58-67.
[41] [41] QUAN J, ZHOU Z J, LIU Y J, et al. A miniature liquid helium temperature JT cryocooler for space application[J]. Sci China Tech Sci, 2014, 57: 2236-2240.
[42] [42] MA Yuexue, QUAN Jia, WANG Juan, et al. A closed loop 2.65 K hybrid JT cooler for future space application[J]. Science China Technological Sciences, 2019, 62(2): 361-364.
[43] [43] LIU Z, YANG B, PAN Z, et al. The thermal performance model of a 105 mW@4.41 K 4He Joule-Thomson cryocooler designed for space applications[J]. Cryogenics, 2024, 144: 103965.
[44] [44] PAN X, LIU S, WU Y, et al. Development of a 2~4 K closed-cycle JT cryocooler for space application[C]//IOP Conference Series: Materials Science and Engineering, 2022, 1240(1): 012016.
[47] [47] JIN H, SHEN J, LI C Z, et al. Development of adiabatic demagnetization refrigerator for future astronomy missions[C]//IOP Conference Series: Materials Science and Engineering, 2022, 1240(1): 012027.
[48] [48] LI K, WANG Y-N, LIU P, et al. Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator[J]. Acta Physica Sinica, 2023, 72(19): 190702.
Get Citation
Copy Citation Text
XIE Fang, ZHANG Ankuo, YU Wenhui, XIE Jing. Cryogenic Refrigeration Technology for Origins Space Telescope System[J]. Infrared Technology, 2025, 47(2): 179