The Journal of Light Scattering, Volume. 36, Issue 1, 86(2024)
Study on spectral similarity analysis and identification of green pigments
[1] [1] Ferrari C., Foca G., Ulrici A . Handling large datasets of hyperspectral images: Reducing data size without loss of useful information[J]. Analytica Chimica Acta, 2013, 802(Complete): 29-39.
[2] [2] Wong K K. Development of Co-boresighted Vis-NIR-SWIR Hyperspectral Imaging Systems[C]. SPIE Sensing Technology + Applications. International Society for Optics and Photonics, 2014.
[3] [3] Velez-Reyes M., Messinger D.W., Harms J.D., et al. A next generation field-portable goniometer system[C]. Spie Defense + Security. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 2016:98400J.
[4] [4] Taixia W., Bo Y., Shudong W., et al. A Normalized Difference Spectral Recognition Index for Azurite Pigment[J]. Applied spectroscopy, 2020, 74(5):571-582.
[14] [14] Bian J, Wang L, Scherer R , et al.Abnormal Detection of Electricity Consumption of User Based on Particle Swarm Optimization and Long Short Term Memory With the Attention Mechanism[J].IEEE Access, 2021, 9:47252-47265.
Get Citation
Copy Citation Text
FAN Xinyu, PAN Guoxiang, HE Guiping, XU Bo, QIU Chengcong, ZHOU Mengyu, XU Minhong, LI Jinhua. Study on spectral similarity analysis and identification of green pigments[J]. The Journal of Light Scattering, 2024, 36(1): 86
Category:
Received: Sep. 22, 2023
Accepted: --
Published Online: Jul. 22, 2024
The Author Email: Guoxiang PAN (pgxzjut@163.com)