Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 7, 1080(2025)
Unsupervised source-free multi-domain adaptive diabetic retinopathy classification
[1] LI G H. Correlations among blood lipid index and glycosylated hemoglobin levels and severity and prognosis of patients with diabetic retinopathy[J]. Medical Journal of Chinese People’s Health, 36, 149-152(2024).
[3] YANG F Y, PENG S J, LIU J et al. To explore the potential biomarkers of proliferative diabetic retinopathy by plasma proteomics[J]. Journal of Capital Medical University, 45, 385-391(2024).
[6] ZHANG Z Q, ZHAO K H, NIU H F et al. Application of deep learning in grading of diabetic retinopathy[J]. Computer Systems & Applications, 33, 231-244(2024).
[7] YU X Y, LIU J X, XUE W X et al. Diabetic retinopathy image classification model for based on improved CNN[J]. Modern Electronics Technique, 44, 168-172(2021).
[9] ZHU J D, ZHUO G P, WU S Y et al. Classification and detection of diabetes retinopathy based on transfer learning[J]. Journal of North University of China (Natural Science Edition), 44, 478-486(2023).
[11] KARTHIK M, SOHIER D. APTOS 2019 blindness detection[R](2019).
[17] MURPHY K, SCHÖLKOPF B, GANIN Y et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 17, 2096-2030(2016).
[18] LONG M S, ZHU H, WANG J M et al. Deep transfer learning with joint adaptation networks[C], 2208-2217(2017).
Get Citation
Copy Citation Text
Guanghua ZHANG, Yang YANG, Guohua XU. Unsupervised source-free multi-domain adaptive diabetic retinopathy classification[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(7): 1080
Category:
Received: Feb. 6, 2025
Accepted: --
Published Online: Aug. 11, 2025
The Author Email: Guanghua ZHANG (zhangguanghua@tyu.edu.cn)