Chinese Journal of Lasers, Volume. 47, Issue 7, 701015(2020)
Fluorescence Manipulation Based on Mie Resonance of Semiconductor Nanoparticles with High Refractive Index
[1] Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).
[2] Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).
[3] Physics of negative refractive index materials[J]. Reports on Progress in Physics, 68, 449-521(2005).
[4] et alNegative refraction in semiconductor metamaterials[J]. Nature Materials, 6, 946-950(2007).
[5] et alExtremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).
[6] et alMagnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).
[7] García-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 83, 2845-2848(1999).
[8] et alMetamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).
[9] García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).
[11] et alFunctional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 9, 195-213(2015).
[12] O'Hara J F, Azad A K, et al. Manipulation of terahertz radiation using metamaterials[J]. Laser & Photonics Reviews, 5, 513-533(2011).
[13] Ten Eyck G A, et al. Micrometer-scale cubic unit cell 3D metamaterial layers[J]. Advanced Materials, 22, 5053-5057(2010).
[14] et alDesign of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum[J]. Physical Review Letters, 99, 017401(2007).
[15] Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial[J]. Optics Express, 18, 12348-12353(2010).
[16] Rodriguez-Fortuno F J, et al. Double-negative polarization-independent fishnet metamaterial in the visible spectrum[J]. Optics Letters, 34, 1603-1605(2009).
[17] et alGold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).
[18] Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).
[19] All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).
[20] Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).
[23] et alOptical response features of Si-nanoparticle arrays[J]. Physical Review B, 82, 045404(2010).
[24] et alMie resonance-based dielectric metamaterials[J]. Materials Today, 12, 60-69(2009).
[25] et alHot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films[J]. Physical Review Letters, 115, 067403(2015).
[26] et al354(6314): aag2472(2016).
[28] et alEnhanced second harmonic generation in individual barium titanate nanoparticles driven by Mie resonances[J]. Journal of Materials Chemistry C, 5, 4810-4819(2017).
[29] et alNonlinear interference and tailorable third-harmonic generation from dielectric oligomers[J]. ACS Photonics, 2, 578-582(2015).
[30] et alAsymmetric resonant cavities and their applications in optics and photonics: a review[J]. Frontiers of Optoelectronics in China, 3, 109-124(2010).
[31] et alLaser printing of silicon nanoparticles with resonant optical electric and magnetic responses[J]. Nature Communications, 5, 3402(2014).
[32] et alResonance coupling in heterostructures composed of silicon nanosphere and monolayer WS2: a magnetic-dipole-mediated energy transfer process[J]. ACS Nano, 13, 1739-1750(2019).
[33] et alMagnetic light[J]. Scientific Reports, 2, 492(2012).
[34] Generalized Kerker effects in nanophotonics and meta-optics[J]. Optics Express, 26, 13085-13105(2018).
[35] Electromagnetic scattering by magnetic spheres[J]. Journal of the Optical Society of America, 73, 765-767(1983).
[36] et alDirectional visible light scattering by silicon nanoparticles[J]. Nature Communications, 4, 1527(2013).
[37] et alHot-electron intraband luminescence from GaAs nanospheres mediated by magnetic dipole resonances[J]. Nano Letters, 17, 4853-4859(2017).
[38] et alSecond harmonic generation from an individual amorphous selenium nanosphere[J]. Nanotechnology, 27, 425206(2016).
[39] et alDirectional scattering in a germanium nanosphere in the visible light region[J]. Advanced Optical Materials, 5, 1700761(2017).
[40] et al4(8): eaas9894[J]. efficient photothermal conversion. Science Advances(2018).
[41] et alLight-emitting halide perovskite nanoantennas[J]. Nano Letters, 18, 1185-1190(2018).
[42] et alTunable hybrid fano resonances in halide perovskite nanoparticles[J]. Nano Letters, 18, 5522-5529(2018).
[43] et al5(11): eaax0939(2019).
[44] et alAll-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 11, 4445-4452(2017).
[45] et alHigh-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).
[46] et alMirror-image-induced magnetic modes[J]. ACS Nano, 7, 664-668(2013).
[47] et alA new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities[J]. Advanced Materials, 24, 5934-5938(2012).
[48] Hydrogenated amorphous silicon (a-Si:H) colloids[J]. Chemistry of Materials, 22, 6378-6383(2010).
[49] Silicon colloids: from microcavities to photonic sponges[J]. Advanced Materials, 20, 95-98(2008).
[50] et alSingle-mode lasing and 3D confinement from perovskite micro-cubic cavity[J]. Journal of Materials Chemistry C, 6, 11740-11748(2018).
[51] et alBeyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances[J]. Nanoscale, 11, 6747-6754(2019).
[52] et alSingle-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 11, 10681-10688(2017).
[53] Yang J, du J, et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 12, 5923-5931(2018).
[54] et alEnhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances[J]. Angewandte Chemie, 58, 14452-14456(2019).
[55] et alColloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties[J]. Advanced Materials, 27, 7432-7439(2015).
[56] et alVisualizing Mie resonances in low-index dielectric nanoparticles[J]. Physical Review Letters, 120, 253902(2018).
[57] et alMonodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region[J]. Nature Communications, 4, 1904(2013).
[58] et alLighting up silicon nanoparticles with Mie resonances[J]. Nature Communications, 9, 2964(2018).
[59] et alModifying Mie resonances and carrier dynamics of silicon nanoparticles by dense electron-hole plasmas[J]. Physical Review Applied, 13, 014003(2020).
[60] et alNanoscale generation of white light for ultrabroadband nanospectroscopy[J]. Nano Letters, 18, 535-539(2018).
[61] et alRed spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals[J]. Nature Nanotechnology, 5, 878-884(2010).
[62] et alHigh-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).
[63] et al-01-09)[2020-02-15]. https:∥arxiv.org/abs/2003.03922v1.(2020).
[64] Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).
[65] et alObservation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).
[66] et alBound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).
[67] et alLasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).
[68] et alAnalytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 113, 037401(2014).
[69] et alOrganometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).
[70] Perovskite photonic sources[J]. Nature Photonics, 10, 295-302(2016).
[71] et alActive meta-optics and nanophotonics with halide perovskites[J]. Applied Physics Reviews, 6, 031307(2019).
[72] et al-05-21)[2020-02-15]. https:∥arxiv.org/pdf/1905.08646v1.pdf.(2019).
[73] Fernández-Domínguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy[J]. ACS Nano, 6, 1380-1386(2012).
[74] Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy[J]. Nanoscale, 8, 7119-7126(2016).
[75] et alMetal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement[J]. ACS Nano, 11, 3067-3080(2017).
[76] et alGreatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna[J]. Nanophotonics, 8, 2313-2319(2019).
[77] et alNonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 8, 725-745(2019).
[78] et alAll-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 16, 5143-5151(2016).
[79] et alManipulation of magnetic dipole emission from Eu 3+ with Mie-resonant dielectric metasurfaces[J]. Nano Letters, 19, 1015-1022(2019).
[80] et alEnhancing magnetic light emission with all-dielectric optical nanoantennas[[J]. ]. Nano Letters, 18, 3481-3487(2018).
[81] et alAll-dielectric hollow nanodisk for tailoring magnetic dipole emission[J]. Optics Letters, 41, 5011-5014(2016).
[82] et alModifying magnetic dipole spontaneous emission with nanophotonic structures[J]. Laser & Photonics Reviews, 11, 1600268(2017).
[83] et alUnidirectional emission in an all-dielectric nanoantenna[J]. Journal of Physics: Condensed Matter, 30, 124002(2018).
[84] et alIsotropic magnetic Purcell effect[J]. ACS Photonics, 5, 678-683(2018).
[85] et alElectrically controlled scattering in a hybrid dielectric-plasmonic nanoantenna[J]. Nano Letters, 17, 4793-4800(2017).
[86] Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 82, 2257-2298(2010).
[87] et alDirectional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).
[88] et alTopologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).
[89] et alUltrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).
[90] et al-09-27)[2020-02-15]. https:∥arxiv.org/abs/1909.12618?context=physics.(2019).
[91] et al-07-01)[2020-02-15]. https:∥arxiv., org/abs/1707, 00181(2017).
Get Citation
Copy Citation Text
Xiang Jin, Xu Yi, Lan Sheng. Fluorescence Manipulation Based on Mie Resonance of Semiconductor Nanoparticles with High Refractive Index[J]. Chinese Journal of Lasers, 2020, 47(7): 701015
Special Issue:
Received: Mar. 30, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: