Chinese Journal of Lasers, Volume. 47, Issue 7, 701015(2020)

Fluorescence Manipulation Based on Mie Resonance of Semiconductor Nanoparticles with High Refractive Index

Xiang Jin1,2, Xu Yi1, and Lan Sheng2
Author Affiliations
  • 1Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • 2School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006, China
  • show less
    References(92)

    [1] Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [2] Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [3] Physics of negative refractive index materials[J]. Reports on Progress in Physics, 68, 449-521(2005).

    [4] et alNegative refraction in semiconductor metamaterials[J]. Nature Materials, 6, 946-950(2007).

    [5] et alExtremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [6] et alMagnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [7] García-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 83, 2845-2848(1999).

    [8] et alMetamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [9] García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).

    [11] et alFunctional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 9, 195-213(2015).

    [12] O'Hara J F, Azad A K, et al. Manipulation of terahertz radiation using metamaterials[J]. Laser & Photonics Reviews, 5, 513-533(2011).

    [13] Ten Eyck G A, et al. Micrometer-scale cubic unit cell 3D metamaterial layers[J]. Advanced Materials, 22, 5053-5057(2010).

    [14] et alDesign of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum[J]. Physical Review Letters, 99, 017401(2007).

    [15] Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial[J]. Optics Express, 18, 12348-12353(2010).

    [16] Rodriguez-Fortuno F J, et al. Double-negative polarization-independent fishnet metamaterial in the visible spectrum[J]. Optics Letters, 34, 1603-1605(2009).

    [17] et alGold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).

    [18] Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [19] All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [20] Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).

    [23] et alOptical response features of Si-nanoparticle arrays[J]. Physical Review B, 82, 045404(2010).

    [24] et alMie resonance-based dielectric metamaterials[J]. Materials Today, 12, 60-69(2009).

    [25] et alHot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films[J]. Physical Review Letters, 115, 067403(2015).

    [26] et al354(6314): aag2472(2016).

    [28] et alEnhanced second harmonic generation in individual barium titanate nanoparticles driven by Mie resonances[J]. Journal of Materials Chemistry C, 5, 4810-4819(2017).

    [29] et alNonlinear interference and tailorable third-harmonic generation from dielectric oligomers[J]. ACS Photonics, 2, 578-582(2015).

    [30] et alAsymmetric resonant cavities and their applications in optics and photonics: a review[J]. Frontiers of Optoelectronics in China, 3, 109-124(2010).

    [31] et alLaser printing of silicon nanoparticles with resonant optical electric and magnetic responses[J]. Nature Communications, 5, 3402(2014).

    [32] et alResonance coupling in heterostructures composed of silicon nanosphere and monolayer WS2: a magnetic-dipole-mediated energy transfer process[J]. ACS Nano, 13, 1739-1750(2019).

    [33] et alMagnetic light[J]. Scientific Reports, 2, 492(2012).

    [34] Generalized Kerker effects in nanophotonics and meta-optics[J]. Optics Express, 26, 13085-13105(2018).

    [35] Electromagnetic scattering by magnetic spheres[J]. Journal of the Optical Society of America, 73, 765-767(1983).

    [36] et alDirectional visible light scattering by silicon nanoparticles[J]. Nature Communications, 4, 1527(2013).

    [37] et alHot-electron intraband luminescence from GaAs nanospheres mediated by magnetic dipole resonances[J]. Nano Letters, 17, 4853-4859(2017).

    [38] et alSecond harmonic generation from an individual amorphous selenium nanosphere[J]. Nanotechnology, 27, 425206(2016).

    [39] et alDirectional scattering in a germanium nanosphere in the visible light region[J]. Advanced Optical Materials, 5, 1700761(2017).

    [40] et al4(8): eaas9894[J]. efficient photothermal conversion. Science Advances(2018).

    [41] et alLight-emitting halide perovskite nanoantennas[J]. Nano Letters, 18, 1185-1190(2018).

    [42] et alTunable hybrid fano resonances in halide perovskite nanoparticles[J]. Nano Letters, 18, 5522-5529(2018).

    [43] et al5(11): eaax0939(2019).

    [44] et alAll-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 11, 4445-4452(2017).

    [45] et alHigh-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [46] et alMirror-image-induced magnetic modes[J]. ACS Nano, 7, 664-668(2013).

    [47] et alA new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities[J]. Advanced Materials, 24, 5934-5938(2012).

    [48] Hydrogenated amorphous silicon (a-Si:H) colloids[J]. Chemistry of Materials, 22, 6378-6383(2010).

    [49] Silicon colloids: from microcavities to photonic sponges[J]. Advanced Materials, 20, 95-98(2008).

    [50] et alSingle-mode lasing and 3D confinement from perovskite micro-cubic cavity[J]. Journal of Materials Chemistry C, 6, 11740-11748(2018).

    [51] et alBeyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances[J]. Nanoscale, 11, 6747-6754(2019).

    [52] et alSingle-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 11, 10681-10688(2017).

    [53] Yang J, du J, et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 12, 5923-5931(2018).

    [54] et alEnhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances[J]. Angewandte Chemie, 58, 14452-14456(2019).

    [55] et alColloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties[J]. Advanced Materials, 27, 7432-7439(2015).

    [56] et alVisualizing Mie resonances in low-index dielectric nanoparticles[J]. Physical Review Letters, 120, 253902(2018).

    [57] et alMonodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region[J]. Nature Communications, 4, 1904(2013).

    [58] et alLighting up silicon nanoparticles with Mie resonances[J]. Nature Communications, 9, 2964(2018).

    [59] et alModifying Mie resonances and carrier dynamics of silicon nanoparticles by dense electron-hole plasmas[J]. Physical Review Applied, 13, 014003(2020).

    [60] et alNanoscale generation of white light for ultrabroadband nanospectroscopy[J]. Nano Letters, 18, 535-539(2018).

    [61] et alRed spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals[J]. Nature Nanotechnology, 5, 878-884(2010).

    [62] et alHigh-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [63] et al-01-09)[2020-02-15]. https:∥arxiv.org/abs/2003.03922v1.(2020).

    [64] Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).

    [65] et alObservation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [66] et alBound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [67] et alLasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [68] et alAnalytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 113, 037401(2014).

    [69] et alOrganometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [70] Perovskite photonic sources[J]. Nature Photonics, 10, 295-302(2016).

    [71] et alActive meta-optics and nanophotonics with halide perovskites[J]. Applied Physics Reviews, 6, 031307(2019).

    [72] et al-05-21)[2020-02-15]. https:∥arxiv.org/pdf/1905.08646v1.pdf.(2019).

    [73] Fernández-Domínguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy[J]. ACS Nano, 6, 1380-1386(2012).

    [74] Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy[J]. Nanoscale, 8, 7119-7126(2016).

    [75] et alMetal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement[J]. ACS Nano, 11, 3067-3080(2017).

    [76] et alGreatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna[J]. Nanophotonics, 8, 2313-2319(2019).

    [77] et alNonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 8, 725-745(2019).

    [78] et alAll-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 16, 5143-5151(2016).

    [79] et alManipulation of magnetic dipole emission from Eu 3+ with Mie-resonant dielectric metasurfaces[J]. Nano Letters, 19, 1015-1022(2019).

    [80] et alEnhancing magnetic light emission with all-dielectric optical nanoantennas[[J]. ]. Nano Letters, 18, 3481-3487(2018).

    [81] et alAll-dielectric hollow nanodisk for tailoring magnetic dipole emission[J]. Optics Letters, 41, 5011-5014(2016).

    [82] et alModifying magnetic dipole spontaneous emission with nanophotonic structures[J]. Laser & Photonics Reviews, 11, 1600268(2017).

    [83] et alUnidirectional emission in an all-dielectric nanoantenna[J]. Journal of Physics: Condensed Matter, 30, 124002(2018).

    [84] et alIsotropic magnetic Purcell effect[J]. ACS Photonics, 5, 678-683(2018).

    [85] et alElectrically controlled scattering in a hybrid dielectric-plasmonic nanoantenna[J]. Nano Letters, 17, 4793-4800(2017).

    [86] Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 82, 2257-2298(2010).

    [87] et alDirectional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).

    [88] et alTopologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [89] et alUltrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [90] et al-09-27)[2020-02-15]. https:∥arxiv.org/abs/1909.12618?context=physics.(2019).

    [91] et al-07-01)[2020-02-15]. https:∥arxiv., org/abs/1707, 00181(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xiang Jin, Xu Yi, Lan Sheng. Fluorescence Manipulation Based on Mie Resonance of Semiconductor Nanoparticles with High Refractive Index[J]. Chinese Journal of Lasers, 2020, 47(7): 701015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 30, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0701015

    Topics