Optical Technique, Volume. 46, Issue 6, 741(2020)

A fast pedestrian detection method using two-level random forest classifier

SHAN Xiaoke1、* and ZHANG Binglin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [6] [6] Zhang X, Zhou X, Lin M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]∥ Computer Vision and Pattern Recognition, Salt Lake City,Utah,USA:IEEE,2018:6848—6856.

    [7] [7] A Womg, M J Shafiee, F Li, et al. Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection [C]∥ 2018 15th Conference on Computer and Robot Vision (CRV),Toronto,Canada,IEEE,USA,2018:95—101.

    [8] [8] O. Déniz, Bueno G , Salido J , et al. Face recognition using histograms of oriented gradients[J]. Pattern Recognition Letter,2011,32(12):1598—1603.

    [10] [10] Gan G, Cheng J. Pedestrian detection based on HOG-LBP feature [C]∥Seventh International Conference on Computational Intelligence and Security, Sanya, Hainan, China: IEEE, USA,2011:1184—1187.

    [13] [13] Ren S, Girshick R, et al. Faster R-CNN:towards real-time object detecion with reqion proposal networks[J]. IEEE Transactions on pattern Analysis & Machine Intelligence,2017,39(6):1137—1149.

    [14] [14] Cheng Y, Wang D, Zhou P, et al. Model compression and acceleration for deep neural networks:the principles,progress,and challenges[J].IEEE Signal Processing Magazine,2018,35(1):126—136.

    [15] [15] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. Computer Ence,2015,14(7):38—39.

    [16] [16] Price R, Iso K I, Shinoda K. Wise teachers train better DNN acoustic models[J]. EURASIP Journal on Audio, Speech, and Music Processing,2016,2016(1):10.

    [17] [17] Kim S, Lee J, Ko B, et al. X-ray image classification using random forests with local binary patterns[C]∥ International Conference on Machine Learning and Cybernetics,Qingdao,China,IEEE,USA,2010:3190—3194.

    [18] [18] Dalai N. Inria person database[EB/OL].[2015-12-20]. http:∥pascal.inscal.inrialpes.fr/data/human

    [19] [19] Wojek C, Dollar P, Schiele B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):743—761.

    [20] [20] Kitani, Kris M, Lee, et al. Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance[J]. International Journal of Computer Vision,2018,126(9):1027—1044.

    [21] [21] Zhou J, Zheng H, Yin H, et al. Object detection from images based on MFF-RPN and Multi-scale CNN [C]∥ In Proceedings of 2017 Chinese Intelligent Systems Conference, Singapore, Springer, Germany,2018,460:343—351.

    [22] [22] Zhu X, Wang Y, Dai J, et al. Flow-Guided feature aggregation for video object detection[C]∥ International Conference on Computer Vision, Venice,Italy,IEEE,USA,2017:408—417.

    Tools

    Get Citation

    Copy Citation Text

    SHAN Xiaoke, ZHANG Binglin. A fast pedestrian detection method using two-level random forest classifier[J]. Optical Technique, 2020, 46(6): 741

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 13, 2020

    Accepted: --

    Published Online: Apr. 7, 2021

    The Author Email: Xiaoke SHAN (sxk2019@126.com)

    DOI:

    CSTR:32186.14.

    Topics