Optoelectronics Letters, Volume. 21, Issue 6, 378(2025)
Perception-entropy-driven temporal reusing for real-time ray tracing
[1] [1] BADT J S. Two algorithms for taking advantage of temporal coherence in ray tracing[J]. The visual computer, 1988, 4(3): 123-132.
[2] [2] HAVRAN V, BITTNER J, SEIDEL H P. Exploiting temporal coherence in ray casted walkthroughs[C]//Proceedings of the 19th Spring Conference on Computer Graphics, April 24-26, 2003, Budmerice, Slovakia. New York: ACM, 2003: 149-155.
[3] [3] DIDYK P, EISEMANN E, RITSCHEL T, et al. Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays[J]. Computer graphics forum, 2010, 29(2): 713-722.
[4] [4] SCHERZER D, YANG L, MATTAUSCH O, et al. Temporal coherence methods in real-time rendering[J]. Computer graphics forum, 2012, 31(8): 2378-2408.
[5] [5] YANG S, ZHAO Y, LUO Y, et al. MNSS: neural super-sampling framework for real-time rendering on mobile devices[J]. IEEE transactions on visualization and computer graphics, 2023, 30(7): 4271-4284.
[6] [6] LI J, CHEN Z, WU X, et al. Neural super-resolution for real-time rendering with radiance demodulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 17-21, 2024, Seattle, WA, USA. New York: IEEE, 2024: 4357-4367.
[7] [7] GALEA S, DEBATTISTA K, SPINA S. GPU-based selective sparse sampling for interactive high-fidelity rendering[C]//2014 6th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), September 9-12, 2014, Valletta, Malta. New York: IEEE, 2014: 1-8.
[8] [8] STENGEL M, GROGORICK S, EISEMANN M, et al. Adaptive image-space sampling for gaze-contingent real-time rendering[J]. Computer graphics forum, 2016, 35(4): 129-139.
[9] [9] ZHANG R, CHEN C, SHEN Z, et al. Rendering acceleration based on JND-guided sampling prediction[J]. Multimedia systems, 2024, 30(1): 6.
[10] [10] DONNELLY W, WOLFE A, BTEPAGE J, et al. FAST: filter-adapted spatio-temporal sampling for real-time rendering[C]//Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2024. New York: ACM, 2024, 7(1): 1-16.
[11] [11] KORA M, SALAN C, GEORGIEV I, et al. Perceptual error optimization for Monte Carlo animation rendering[C]//Proceedings of the 2023 SIGGRAPH Asia Conference, December 12-15, 2023, Sydney, Australia. New York: ACM, 2023: 1-10.
[12] [12] NEHAB D, SANDER P V, LAWRENCE J, et al. Accelerating real-time shading with reverse reprojection caching[J]. Graphics hardware, 2007, 41: 61-62.
[13] [13] YANG L, TSE Y C, SANDER P V, et al. Image-based bidirectional scene reprojection[C]//Proceedings of the 2011 SIGGRAPH Asia Conference, December 12-15, 2011, Hong Kong, China. New York: ACM, 2011: 1-10.
[14] [14] BITTERLI B, WYMAN C, PHARR M, et al. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting[J]. ACM transactions on graphics, 2020, 39(4): 148.
[15] [15] SHAH I N, KT A, NARAYANAN P J. Combining resampled importance and projected solid angle samplings for many area light rendering[C]//Proceedings of the 2023 SIGGRAPH Asia Technical Communications, December 12-15, 2023, Sydney, Australia. New York: ACM, 2023: 1-4.
[16] [16] LIN D, KETTUNEN M, BITTERLI B, et al. Generalized resampled importance sampling: foundations of ReSTIR[J]. ACM transactions on graphics, 2022, 41(4): 1-23.
[17] [17] SAWHNEY R, LIN D, KETTUNEN M, et al. Decorrelating ReSTIR samplers via MCMC mutations[J]. ACM transactions on graphics, 2024, 43(1): 1-15.
[18] [18] WANG L, SHI X, LIU Y. Foveated rendering: a state-of-the-art survey[J]. Computational visual media, 2023, 9(2): 195-228.
[19] [19] SHI X, WANG L, WEI X, et al. Foveated photon mapping[J]. IEEE transactions on visualization and computer graphics, 2021, 27(11): 4183-4193.
[20] [20] MAJERCIK Z, MARRS A, SPJUT J, et al. Scaling probe-based real-time dynamic global illumination for production[J]. Journal of computer graphics techniques, 2021, 10(2).
[21] [21] MYSZKOWSKI K. The visible differences predictor: applications to global illumination problems[C]//Rendering Techniques’ 98: Proceedings of the Eurographics Workshop, June 29-July 1, 1998, Vienna, Austria. Berlin: Springer Vienna, 1998: 223-236.
[22] [22] SHEN C. Visual perception-driven dynamic adaptive shading[C]//2024 4th International Conference on Consumer Electronics and Computer Engineering, January 12-14, 2024, Guangzhou, China. New York: IEEE, 2024: 40-43.
[23] [23] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA. New York: IEEE, 2009: 1597-1604.
[24] [24] HARVEY C, DEBATTISTA K, BASHFORD-ROGERS T, et al. Multi-modal perception for selective rendering[J]. Computer graphics forum, 2017, 36(1): 172-183.
[25] [25] DONG L, LIN W, ZHU C, et al. Selective rendering with graphical saliency model[C]//2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis, June 16-17, 2011, Ithaca, NY, USA. New York: IEEE, 2011: 159-164.
[26] [26] QU L, MEYER G W. Perceptually guided polygon reduction[J]. IEEE transactions on visualization and computer graphics, 2008, 14(5): 1015-1029.
[27] [27] SHEN Z, CHEN C, ZHANG R, et al. Perception-JND-driven path tracing for reducing sample budget[J]. The visual computer, 2024: 1-15.
[28] [28] WEYMOUTH F W. Visual sensory units and the minimum angle of resolution[J]. Optometry and vision science, 1963, 40(9): 550-568.
[29] [29] MANTIUK R. Gaze-dependent screen space ambient occlusion[C]//International Conference on Computer Vision and Graphics (ICCVG 2018), September 17-19, 2018, Warsaw, Poland. Berlin: Springer, 2018: 16-27.
[30] [30] ANDERSSON P, NILSSON J, AKENINE-MLLER T, et al. FLIP: a difference evaluator for alternating images[J]. Proceedings of the ACM on computer graphics and interactive techniques, 2020, 3(2): 15.
[31] [31] AHUMADA J A J, PETERSON H A. Luminance-model-based DCT quantization for color image compression[C]//Human Vision, Visual Processing, and Digital Display III, February 9-14, 1992, San Jose, CA, USA. Washington: SPIE, 1992: 365-374.
[32] [32] ZHANG X H, LIN W S, XUE P. Improved estimation for just-noticeable visual distortion[J]. Signal processing, 2005, 85(4): 795-808.
[33] [33] CHOU C H, LI Y C. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile[J]. IEEE transactions on circuits and systems for video technology, 1995, 5(6): 467-476.
[34] [34] YANG X, LING W S, LU Z K, et al. Just noticeable distortion model and its applications in video coding[J]. Signal processing: image communication, 2005, 20(7): 662-680.
[35] [35] MUELLER J H, NEFF T, VOGLREITER P, et al. Temporally adaptive shading reuse for real-time rendering and virtual reality[J]. ACM transactions on graphics, 2021, 40(2): 1-14.
[36] [36] NVIDIA. 2017. NVIDIA OptiX AI-accelerated denoiser[EB/OL]. (2017-08-24) [2024-08-07]. https://developer.nvidia.com/optix-denoiser.
[37] [37] NIR B, KAI-HWA Y, et al. The Falcor rendering framework[EB/OL]. (2023-10-23) [2024-08-07]. https://github.com/NVIDIAGameWorks/Falcor.
Get Citation
Copy Citation Text
SHEN Zhongye, CHEN Chunyi, YAO Weixun, YU Haiyang, PENG Jun. Perception-entropy-driven temporal reusing for real-time ray tracing[J]. Optoelectronics Letters, 2025, 21(6): 378
Received: May. 28, 2024
Accepted: Jun. 27, 2025
Published Online: Jun. 27, 2025
The Author Email: