Chinese Journal of Lasers, Volume. 50, Issue 23, 2301013(2023)
Frequency Stabilization Characteristics of 87Rb Two‑Photon Transition Spectrum
[1] Nez F, Biraben F, Felder R et al. Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium[J]. Optics Communications, 102, 432-438(1993).
[2] Millerioux Y, Touahri D, Hilico L et al. Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium[J]. Optics Communications, 108, 91-96(1994).
[3] Bernard J E, Madej A A, Siemsen K J et al. Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2-5D5/2 two-photon transition in 87Rb[J]. Optics Communications, 173, 357-364(2000).
[4] Maurice V, Newman Z L, Dickerson S et al. Miniaturized optical frequency reference for next-generation portable optical clocks[J]. Optics Express, 28, 24708-24720(2020).
[5] Newman Z L, Maurice V, Fredrick C et al. High-performance, compact optical standard[J]. Optics Letters, 46, 4702-4705(2021).
[6] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[7] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).
[8] Qi H H, Yang B W, Zhao H J et al. Narrow linewidth laser system for integrating sphere cold atom clock[J]. Laser & Optoelectronics Progress, 60, 1514008(2023).
[9] Xiang J F, Wang L G, Ren W et al. Frequency noise suppression of single-frequency laser with radio-frequency modulation[J]. Chinese Journal of Lasers, 44, 0501009(2017).
[10] Fan P R. Investigation on high resolution two-photon transition spectroscopy of rubidium atom[D](2017).
[11] Tu J H, Liang Y T, Lu F et al. Research on improving the short-term stability of rubidium frequency standard[J]. Journal of Astronautic Metrology and Measurement, 31, 56-58(2011).
[12] Dai Z Y, Lei T R. Calculation of two-photon transition probability without Doppler[J]. Chinese Journal of Atomic and Molecular Physics, 7, 165-167(1990).
[13] Grynberg G, Cagnac B. Doppler-free multiphotonic spectroscopy[J]. Reports on Progress in Physics, 40, 791-841(1977).
[14] Sheng D, Pérez Galván A, Orozco L A. Lifetime measurements of the 5D states of rubidium[J]. Physical Review A, 78, 062506(2008).
[15] Thomas J E, Kelly M J, Monchalin J P et al. Transit-time effects in power-broadened Doppler-free saturation resonances[J]. Physical Review A, 15, 2356-2365(1977).
[16] Terra O, Hussein H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in rubidium[J]. Applied Physics B, 122, 27(2016).
[17] Zhang S Y, Wu J T, Zhang Y L et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms[J]. Scientific Reports, 5, 15114(2015).
Get Citation
Copy Citation Text
Yiming Meng, Jingfeng Xiang, Bin Xu, Biao Li, Jinyin Wan, Wei Ren, Siminda Deng, Di Zhang, Lü Desheng. Frequency Stabilization Characteristics of 87Rb Two‑Photon Transition Spectrum[J]. Chinese Journal of Lasers, 2023, 50(23): 2301013
Category: laser devices and laser physics
Received: Mar. 21, 2023
Accepted: Apr. 28, 2023
Published Online: Dec. 7, 2023
The Author Email: Desheng Lü (dslv@siom.ac.cn)