Acta Optica Sinica, Volume. 44, Issue 4, 0400001(2024)
Underwater Orbital Angular Momentum Optical Communications
[1] Che X H, Wells I, Dickers G et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine, 48, 143-151(2010).
[2] Al-Shamma′a A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHz frequencies through seawater[J]. IEEE Transactions on Antennas and Propagation, 52, 2843-2849(2004).
[3] Al-Kinani A, Wang C X, Zhou L et al. Optical wireless communication channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 20, 1939-1962(2018).
[4] Uysal M, Nouri H. Optical wireless communications: an emerging technology[C](2014).
[5] Zeng Z Q, Fu S, Zhang H H et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 19, 204-238(2017).
[6] Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1537, 151-160(1991).
[7] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 62, 226-234(2014).
[8] Laux A, Billmers R, Mullen L et al. The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment[J]. Journal of Modern Optics, 49, 439-451(2002).
[9] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[10] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).
[11] Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 62, 034201(2018).
[12] Wang J, Liu J, Li S H et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 11, 527(2021).
[13] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).
[14] Wang J, Chen S, Liu J. Orbital angular momentum communications based on standard multi-mode fiber (invited paper)[J]. APL Photonics, 6, 060804(2021).
[15] Wang J, Cai C K, Cui F et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects[J]. Advanced Photonics, 5, 036004(2023).
[16] Baghdady J, Miller K, Morgan K et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 24, 9794-9805(2016).
[17] Ren Y X, Li L, Wang Z et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 6, 33306(2016).
[18] Sozer E M, Stojanovic M, Proakis J G. Underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 25, 72-83(2000).
[19] Quazi A, Konrad W. Underwater acoustic communications[J]. IEEE Communications Magazine, 20, 24-30(1982).
[20] Martelli P, Gatto A, Boffi P et al. Free-space optical transmission with orbital angular momentum division multiplexing[J]. Electronics Letters, 47, 972-973(2011).
[21] Zielinski A, Yoon Y H, Wu L X. Performance analysis of digital acoustic communication in a shallow water channel[J]. IEEE Journal of Oceanic Engineering, 20, 293-299(1995).
[22] Ochi H, Watanabe Y, Shimura T. Basic study of underwater acoustic communication using 32-quadrature amplitude modulation[J]. Japanese Journal of Applied Physics, 44, 4689(2005).
[23] Esmaiel H, Qasem Z A H, Sun H X et al. Wireless information and power transfer for underwater acoustic time-reversed NOMA[J]. IET Communications, 14, 3394-3403(2020).
[24] Qasem Z A H, Leftah H A, Sun H X et al. Deep learning-based code indexed modulation for autonomous underwater vehicles systems[J]. Vehicular Communications, 28, 100314(2021).
[25] Saeed N, Celik A, Al-Naffouri T Y et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 94, 101935(2019).
[26] Guan Q S, Ji F, Liu Y et al. Distance-vector-based opportunistic routing for underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 6, 3831-3839(2019).
[27] Shi C Z, Dubois M, Wang Y et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 7250-7253(2017).
[28] Jiang S M. State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: a survey based on a MAC reference model[J]. IEEE Communications Surveys & Tutorials, 20, 96-131(2018).
[29] Zhu Z H, Gao W, Mu C Y et al. Reversible orbital angular momentum photon-phonon conversion[J]. Optica, 3, 212-217(2016).
[30] Jiang X, Li Y, Liang B et al. Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 117, 034301(2016).
[31] Climent S, Sanchez A, Capella J V et al. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers[J]. Sensors, 14, 795-833(2014).
[32] Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 47, 84-89(2009).
[33] Chitre M, Shahabudeen S, Stojanovic M. Underwater acoustic communications and networking: recent advances and future challenges[J]. Marine Technology Society Journal, 42, 103-116(2008).
[34] Song H C, Roux P, Hodgkiss W S et al. Multiple-input-multiple-output coherent time reversal communications in a shallow-water acoustic channel[J]. IEEE Journal of Oceanic Engineering, 31, 170-178(2006).
[35] Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: research challenges[J]. Ad Hoc Networks, 3, 257-279(2005).
[36] Freitag L, Stojanovic M, Singh S et al. Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication[J]. IEEE Journal of Oceanic Engineering, 26, 586-593(2001).
[37] Stojanovic M. Recent advances in high-speed underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 21, 125-136(1996).
[38] Murad M. Assessment and performance improvement of multicarrier modulation for underwater acoustic communications[D](2022).
[39] Li B S, Huang J, Zhou S L et al. MIMO-OFDM for high-rate underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 34, 634-644(2009).
[40] Pompili D, Akyildiz I F. Overview of networking protocols for underwater wireless communications[J]. IEEE Communications Magazine, 47, 97-102(2009).
[41] Partan J, Kurose J, Levine B N. A survey of practical issues in underwater networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 11, 23-33(2007).
[42] Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 101, 2973-2977(1997).
[43] Moore R K. Radio communication in the sea[J]. IEEE Spectrum, 4, 42-51(1967).
[44] Shaw A, Al-Shamma′a A I, Wylie S R et al. Experimental investigations of electromagnetic wave propagation in seawater[C], 572-575(2006).
[45] Uribe C, Grote W. Radio communication model for underwater WSN[C](2009).
[46] Lloret J, Sendra S, Ardid M et al. Underwater wireless sensor communications in the 2.4 GHz ISM frequency band[J]. Sensors, 12, 4237-4264(2012).
[47] Ryecroft S, Shaw A, Fergus P et al. A first implementation of underwater communications in raw water using the 433 MHz frequency combined with a bowtie antenna[J]. Sensors, 19, 1813(2019).
[48] Azar S N, Erdemİr O, Soomro M et al. A hybrid acoustic-RF communication framework for networked control of autonomous underwater vehicles: design and cosimulation[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 30, 1475-1491(2022).
[49] Ganesh P S S P, Venkataraman H. RF-based wireless communication for shallow water networks: survey and analysis[J]. Wireless Personal Communications, 120, 3415-3441(2021).
[50] Ramdhan M S M, Ali M, Effiyana G N et al. Measuring the underwater received power behavior for 433 MHz radio frequency based on different distance and depth for the development of an underwater wireless sensor network[J]. Bulletin of Electrical Engineering and Informatics, 8, 1066-1073(2019).
[51] Omeke K G, Abohmra A, Imran M A et al. Characterization of RF signals in different types of water[C], 1-6(2019).
[52] Li Y Z, Wang S N, Jin C et al. A survey of underwater magnetic induction communications: fundamental issues, recent advances, and challenges[J]. IEEE Communications Surveys & Tutorials, 21, 2466-2487(2019).
[53] Guo H Z, Sun Z, Wang P. Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments[J]. IEEE Transactions on Vehicular Technology, 66, 6619-6632(2017).
[54] Qureshi U M, Shaikh F K, Aziz Z et al. RF path and absorption loss estimation for underwater wireless sensor networks in different water environments[J]. Sensors, 16, 890(2016).
[55] Sendra S, Lloret J, Rodrigues J J P C et al. Underwater wireless communications in freshwater at 2.4 GHz[J]. IEEE Communications Letters, 17, 1794-1797(2013).
[56] Hattab G, El-Tarhuni M, Al-Ali M et al. An underwater wireless sensor network with realistic radio frequency path loss model[J]. International Journal of Distributed Sensor Networks, 9, 508708(2013).
[57] Zoksimovski A, Rappaport C, Sexton D et al. Underwater electromagnetic communications using conduction: channel characterization[C](2012).
[58] Cella U M, Johnstone R, Shuley N. Electromagnetic wave wireless communication in shallow water coastal environment: theoretical analysis and experimental results[C](2009).
[59] Liu L B, Zhou S L, Cui J H. Prospects and problems of wireless communication for underwater sensor networks[J]. Wireless Communications & Mobile Computing, 8, 977-994(2008).
[60] Gussen C M G, Diniz P S R, Campos M L R et al. A survey of underwater wireless communication technologies[J]. Journal of Communication and Information Systems, 31, 242-255(2016).
[61] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 53, 214-233(1963).
[62] Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 47, 277-283(2008).
[63] Cossu G, Corsini R, Khalid A M et al. Experimental demonstration of high speed underwater visible light communications[C], 11-15(2013).
[64] Oubei H M, Duran J R, Janjua B et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 23, 23302-23309(2015).
[65] Fei C, Zhang J W, Zhang G W et al. Demonstration of 15-M 7.33-gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 36, 728-734(2018).
[66] Wang J L, Yang X Q, Lv W C et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 451, 181-185(2019).
[67] Du J, Wang Y, Fei C et al. Experimental demonstration of 50-m/5-Gbps underwater optical wireless communication with low-complexity chaotic encryption[J]. Optics Express, 29, 783-796(2021).
[68] Du Z H, Ge W M, Cai C Y et al. 90-m/660-mbps underwater wireless optical communication enabled by interleaved single-carrier FDM scheme combined with sparse weight-initiated DNN equalizer[J]. Journal of Lightwave Technology, 41, 5310-5320(2023).
[69] Ji X Y, Yin H X, Jing L Y et al. Performance analysis of underwater wireless optical communication system with strong turbulence channels based on strong fluctuation theory[J]. Acta Optica Sinica, 42, 1801001(2022).
[70] Wei Y, Yu Y H, Hei X B et al. Application of vortex beam and photon counting in underwater optical communication[J]. Laser & Optoelectronics Progress, 59, 1301001(2022).
[71] Liu H D, Hei X B, Yang Y et al. Orbital angular momentum in a superposition state for high-dimensional modulation and demodulation in underwater optical communication[J]. Laser & Optoelectronics Progress, 60, 0901001(2023).
[72] Watson M A, Blanchard P M, Stace C et al. Assessment of laser tracking and data transfer for underwater optical communications[J]. Proceedings of SPIE, 9248, 92480T(2014).
[73] Oubei H M, Durán J R, Janjua B et al. Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel[C](2016).
[74] Liu X Y, Yi S Y, Zhou X L et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 25, 27937-27947(2017).
[75] Wang P L, Li C, Xu Z Y. A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization[J]. Journal of Lightwave Technology, 36, 2627-2637(2018).
[76] Zou P, Liu Y F, Wang F M et al. Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system[J]. Optics Communications, 438, 132-140(2019).
[77] Wang F M, Liu Y F, Shi M et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 58, 056117(2019).
[78] Wang J M, Lu C H, Li S B et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 27, 12171-12181(2019).
[79] Lu C H, Wang J M, Li S B et al. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C], SM2G.6(2019).
[80] Chen H L, Chen X W, Lu J et al. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode[J]. IEEE Photonics Journal, 12, 7902510(2020).
[81] Chen X, Lü W C, Zhang Z J et al. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction[J]. Optics Express, 28, 23784-23795(2020).
[82] Fei C, Wang Y, Du J et al. 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT)[J]. Optics Express, 30, 2326-2337(2022).
[83] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser[J]. Optics Express, 21, 12401-12409(2013).
[84] Lee A J, Zhang C Y, Omatsu T et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 22, 5400-5409(2014).
[85] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).
[86] Beijersbergen M W, Coerwinkel R P C, Kristensen M et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 112, 321-327(1994).
[87] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).
[88] Karimi E, Schulz S A, de Leon I et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014).
[89] Krishna I V V G, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber[J]. Optics Communications, 283, 861-864(2010).
[90] Lin J, Yuan X C, Tao S H et al. Synthesis of multiple collinear helical modes generated by a phase-only element[J]. Journal of the Optical Society of America A, 23, 1214-1218(2006).
[91] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).
[92] Su T H, Scott R P, Djordjevic S S et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 20, 9396-9402(2012).
[93] Zhao Z, Wang J, Li S H et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Optics Letters, 38, 932-934(2013).
[94] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14-B28(2016).
[95] Wang J. Data information transfer using complex optical fields: a review and perspective (Invited Paper)[J]. Chinese Optics Letters, 15, 030005(2017).
[96] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 40, 4827-4830(2015).
[97] Liu J, Wang J. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications[J]. Optics Express, 24, 4258-4269(2016).
[98] Zhao Y F, Liu J, Li S H et al. Secure optical interconnects using orbital angular momentum beams multiplexing/multicasting[J]. Advanced Photonics Nexus, 3, 016004(2023).
[99] Miller J K, Morgan K S, Li W et al. Underwater optical communication link using polarization division multiplexing and orbital angular momentum multiplexing[C](2017).
[100] Zhao Y F, Wang A D, Zhu L et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 42, 4699-4702(2017).
[101] Zhao Y F, Xu J, Wang A D et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link[J]. Optics Express, 25, 28743-28751(2017).
[102] Chen Y, Shen W G, Li Z M et al. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX, 1, 5(2020).
[103] Zhang J R, Fan F, Zeng J W et al. Prototype system for underwater wireless optical communications employing orbital angular momentum multiplexing[J]. Optics Express, 29, 35570-35578(2021).
[104] Cai C K, Zhao Y F, Zhang J Y et al. Fast auto-alignment underwater wireless optical communications employing orbital angular momentum modes[J]. Optics Continuum, 1, 2590-2599(2022).
[105] Hei X B, Zhu Q M, Gai L et al. Photon-counting-based underwater wireless optical communication employing orbital angular momentum multiplexing[J]. Optics Express, 31, 19990-20004(2023).
[106] Wang W, Wang P, Cao T et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence[J]. IEEE Photonics Journal, 9, 7905315(2017).
[107] Cui X Z, Yin X L, Chang H et al. Analysis of an adaptive orbital angular momentum shift keying decoder based on machine learning under oceanic turbulence channels[J]. Optics Communications, 429, 138-143(2018).
[108] Cui X Z, Yin X L, Chang H et al. Experimental study of machine-learning-based orbital angular momentum shift keying decoders in optical underwater channels[J]. Optics Communications, 452, 116-123(2019).
[109] Wang Z Y, Chen M, Wan M Y et al. Coherent demodulated underwater wireless optical communication system based on convolutional neural network[J]. Optics Communications, 534, 129316(2023).
[110] Li S H, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting[J]. Scientific Reports, 5, 9677(2015).
[111] Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array[J]. Scientific Reports, 5, 9662(2015).
[112] Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode[J]. Optics Letters, 40, 5463-5466(2015).
[113] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element[J]. Optics Express, 23, 26221-26233(2015).
[114] Li S H, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics[J]. Optics Letters, 41, 1482-1485(2016).
[115] Jamali M V, Akhoundi F, Salehi J A. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel[J]. IEEE Transactions on Wireless Communications, 15, 4104-4116(2016).
[116] Jamali M V, Chizari A, Salehi J A. Performance analysis of multi-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 29, 462-465(2017).
[117] Wang A D, Zhu L, Zhao Y F et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 26, 8669-8678(2018).
[118] Zhao Y F, Cai C K, Zhang J R et al. Feedback-enabled adaptive underwater twisted light transmission link utilizing the reflection at the air-water interface[J]. Optics Express, 26, 16102-16112(2018).
[119] Wang Y, Zhang P, Wang X L et al. Performance analysis on free space underwater data transmission using Bessel-Gaussian beams in a simulated ocean channel with various effects[J]. Optics Communications, 473, 125969(2020).
[120] Liu W Y, Jin M, Hao Y et al. Efficient identification of orbital angular momentum modes carried by Bessel Gaussian beams in oceanic turbulence channels using convolutional neural network[J]. Optics Communications, 498, 127251(2021).
[121] Robertson E, Pires D G, Dai K J et al. Constant-envelope modulation of ince-gaussian beams for high bandwidth underwater wireless optical communications[J]. Journal of Lightwave Technology, 41, 5209-5216(2023).
[122] Liang Y Z, Su X Z, Cai C K et al. Adaptive turbulence compensation and fast auto-alignment link for free-space optical communications[J]. Optics Express, 29, 40514-40523(2021).
[123] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering[J]. Light: Science & Applications, 8, 27(2019).
Get Citation
Copy Citation Text
Jian Wang, Zhongyang Wang. Underwater Orbital Angular Momentum Optical Communications[J]. Acta Optica Sinica, 2024, 44(4): 0400001
Category: Reviews
Received: Oct. 6, 2023
Accepted: Jan. 5, 2024
Published Online: Feb. 23, 2024
The Author Email: Wang Jian (jwang@hust.edu.cn)
CSTR:32393.14.AOS231614