Acta Optica Sinica, Volume. 37, Issue 3, 318001(2017)
Super-Resolution Reconstruction Theory in Structured Illumination Microscopy
[1] [1] Abbe E. Beitrge zur theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1): 456-468.
[2] [2] Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annu Rev Biochem, 2009,78(1): 993-1016.
[3] [3] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. Journal of Cell Biology, 2010,190(2): 165-175.
[4] [4] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.
[5] [5] Huang F, Hartwich T M, Rivera-Molina F E, et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms[J]. Nat Methods, 2013, 10(7): 653-658.
[6] [6] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chem Rev, 2014, 114(6): 3189-3202.
[7] [7] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nat Methods, 2006, 3(10): 793-795.
[8] [8] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nat Methods, 2011, 8(6): 499-508.
[9] [9] Tam J, Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods[J]. J Neurochem, 2015, 135(4): 643-658.
[10] [10] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Opt Lett, 1999, 24(14): 954-956.
[11] [11] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249.
[12] [12] Otomo K, Hibi T, Kozawa Y, et al. STED microscopy-super-resolution bio-imaging utilizing a stimulated emission depletion[J]. Microscopy, 2015, 64(4): 227-236.
[13] [13] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt 2): 82-87.
[14] [14] Heintzmann R. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 2003, 34(6-7): 283-291.
[15] [15] Dan D, Yao B, Lei M. Structured illumination microscopy for super-resolution and optical sectioning[J]. Chin Sci Bull, 2014, 59(12): 1291-1307.
[16] [16] Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating[C]. Proc SPIE, 1998, 3568: 185-196.
[17] [17] Frohn J T, Knapp H F, Stemmer A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. Proceedings of the National Academy of Science of the United States of America, 2000, 97(13): 7232-7236.
[18] [18] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy-a concept for optical resolution improvement[J]. J Opt Soc Am A: Opt Image Sci Vis, 2002,19(8): 1599-1609.
[19] [19] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102(37): 13081-13086.
[20] [20] Rego E H, Shao L, Macklin J J, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Science of the United States of America, 2012, 109(3): E135-E143.
[21] [21] Frohn J T, Knapp H F, Stemmer A. Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation[J]. Opt Lett, 2001, 26(11): 828-830.
[22] [22] Gustafsson M G, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophys J, 2008, 94(12): 4957-4970.
[23] [23] Fiolka R, Shao L, Rego E H, et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination[J]. Proceedings of the National Academy of Science of the United States of America, 2012, 109(14): 5311-5315.
[24] [24] Li D, Shao L, Chen B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): aab3500.
[25] [25] Schaefer L, Schuster D, Schaffer J. Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach[J]. J Microsc, 2004, 216(Pt 2): 165-174.
[26] [26] Orieux F, Sepulveda E, Loriette V, et al. Bayesian estimation for optimized structured illumination microscopy[J]. Transactions on Image Processing, 2012, 21(2): 601-614.
[27] [27] Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. J Opt Soc Am A, 2009, 26(2): 413-424.
[28] [28] Wicker K, Mandula O, Best G, et al. Phase optimisation for structured illumination microscopy[J]. Opt Express, 2013, 21(2): 2032-2049.
[29] [29] Wicker K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space[J]. Opt Express, 2013, 21(21): 24692-24701.
[30] [30] Zhou X, Lei M, Dan D, et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. J Biomed Opt, 2016, 21(9): 096009.
[31] [31] Chakrova N, Rieger B, Stallinga S. Deconvolution methods for structured illumination microscopy[J]. J Opt Soc Am A, 2016, 33(7): 12-20.
[32] [32] Thomas B, Momany M, Kner P. Optical sectioning structured illumination microscopy with enhanced sensitivity[J]. Journal of Optics, 2013, 15(9): 094004.
[33] [33] Gustafsson M G, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[C]. Proc SPIE, 2000, 3919: 141-150.
[34] [34] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nat Methods, 2009, 6(5): 339-342.
[35] [35] Chang B J, Chou L J, Chang Y C, et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Opt Express, 2009, 17(17): 14710-14721.
[36] [36] Chang B J, Lin S H, Chou L J, et al. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination[J]. Opt Lett, 2011, 36(24): 4773-4775.
[37] [37] Hirvonen L M, Wicker K, Mandula O, et al. Structured illumination microscopy of a living cell[J]. European Biophysics Journal, 2009, 38(6): 807-812.
[38] [38] Fiolka R, Beck M, Stemmer A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J]. Opt Lett, 2008, 33(14): 1629-1631.
[39] [39] Shao L, Kner P, Rego E H, et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nat Methods, 2011, 8(12): 1044-1046.
[40] [40] Frster R, Lu-Walther H W, Jost A, et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator[J]. Opt Express, 2014, 22(17): 20663-20677.
[41] [41] Shaw M, Zajiczek L, O′Holleran K. High speed structured illumination microscopy in optically thick samples[J]. Methods, 2015, 88: 11-19.
[42] [42] O′Holleran K, Shaw M. Polarization effects on contrast in structured illumination microscopy[J]. Opt Lett, 2012, 37(22): 4603-4605.
[43] [43] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Sci Rep, 2013, 3: 1116.
[44] [44] Zhou X, Lei M, Dan D, et al. Double-exposure optical sectioning structured illumination microscopy based on hilbert transform reconstruction[J]. PloS One, 2015, 10(3): e0120892.
[45] [45] Qian J, Lei M, Dan D, et al. Full-color structured illumination optical sectioning microscopy[J]. Sci Rep, 2015, 5: 14513.
[46] [46] Gong H, Xu D, Yuan J, et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level[J]. Nature Communications, 2016, 7: 12142.
[47] [47] Ruan Y, Dan D, Zhang M, et al. Visualization of the 3D structures of small organisms via LED-SIM[J]. Frontiers in Zoology, 2016, 13(1): 26.
[48] [48] Vermeulen P, Zhan H, Orieux F, et al. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples[J]. J Microsc, 2015, 259(3): 257-268.
[49] [49] Chasles F, Dubertret B, Boccara A C. Optimization and characterization of a structured illumination microscope[J]. Opt Express, 2007,15(24): 16130-16140.
Get Citation
Copy Citation Text
Zhou Xing, Dan Dan, Qian Jia, Yao Baoli, Lei Ming. Super-Resolution Reconstruction Theory in Structured Illumination Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318001
Received: Oct. 24, 2016
Accepted: --
Published Online: Mar. 8, 2017
The Author Email: Xing Zhou (zhouxing@opt.ac.cn)