Laser & Optoelectronics Progress, Volume. 62, Issue 5, 0514002(2025)
Molecular Dynamics Simulation of Damage in Femtosecond Laser Processing of Al2O3 Ceramic Materials
Fig. 2. Schematic of tetragonal cell reconstruction. (a) Schematic of quadrilateral cell reconstruction; (b) tetragonal crystal cell
Fig. 4. Schematic of instantaneous energy of Al2O3 ceramic particles irradiated by femtosecond laser with different shapes of focal spots for 1 fs. (a) Rectangular focal spot; (b) circular focal spot; (c) elliptical focal spot
Fig. 5. Molecular dynamics model of interaction between femtosecond laser and Al2O3 ceramics
Fig. 6. Schematic of instantaneous total energy evolution of Al2O3 ceramic particles under femtosecond laser irradiation with different energy densities. (a) 3.7 J/cm2; (b) 4.7 J/cm2; (c) 5.7 J/cm2 ; (d) 6.7 J/cm2
Fig. 7. Spatiotemporal evolution of lattice temperature in Al2O3 ceramics irradiated with femtosecond lasers of different energy densities. (a) 5.7 J/cm2; (b) 6.7 J/cm2
Fig. 8. Spatiotemporal evolution of internal pressure in Al2O3 ceramics irradiated with femtosecond lasers of different energy densities. (a) 5.7 J/cm2; (b) 6.7 J/cm2
Fig. 9. Schematic of instantaneous total energy evolution of Al2O3 ceramic particles under femtosecond laser irradiation with different energy densities. (a) 7.7 J/cm2; (b) 8.7 J/cm2
Fig. 10. Spatiotemporal evolution of atomic number in Al2O3 ceramic grid irradiated by femtosecond laser with the same energy density. (a) 5.7 J/cm2; (b) 6.7 J/cm2; (c) 7.7 J/cm2; (d) 8.7 J/cm2
Fig. 11. Spatiotemporal evolution of temperature in Al2O3 ceramics irradiated with femtosecond lasers of different energy densities. (a) 5.7 J/cm2; (b) 6.7 J/cm2; (c) 7.7 J/cm2; (d) 8.7 J/cm2
Fig. 12. Spatiotemporal evolution of pressure in Al2O3 ceramics under femtosecond laser irradiation with different energy densities. (a) 5.7 J/cm2; (b) 6.7 J/cm2; (c) 7.7 J/cm2 ; (d) 8.7 J/cm2
Fig. 13. Schematic of instantaneous total energy evolution of Al2O3 ceramic particles irradiated with femtosecond laser of different pulse widths. (a) 100 fs; (b) 200 fs; (c) 500 fs ; (d) 1000 fs
Fig. 14. Spatiotemporal evolution of atomic number in Al2O3 ceramic grid irradiated with femtosecond laser of different pulse widths. (a) 100 fs; (b) 200 fs; (c) 500 fs; (d) 1000 fs
Fig. 15. Spatiotemporal evolution of temperature in Al2O3 ceramics irradiated with femtosecond lasers of different pulse widths. (a) 100 fs; (b) 200 fs; (c) 500 fs; (d) 1000 fs
Fig. 16. Spatiotemporal evolution of pressure on Al2O3 ceramics under femtosecond laser irradiation with different pulse widths. (a) 100 fs; (b) 200 fs; (c) 500 fs; (d) 1000 fs
Get Citation
Copy Citation Text
Lixian Xie, Yanfeng Gao, Hua Zhang. Molecular Dynamics Simulation of Damage in Femtosecond Laser Processing of Al2O3 Ceramic Materials[J]. Laser & Optoelectronics Progress, 2025, 62(5): 0514002
Category: Lasers and Laser Optics
Received: Jun. 24, 2024
Accepted: Jul. 29, 2024
Published Online: Mar. 7, 2025
The Author Email:
CSTR:32186.14.LOP241529