Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 3, 472(2025)

Object detection method for aerial images based on adaptive slicing aided inference

Liwei JIN1, Wangming XU1,2、*, and Yaoxiang LI1
Author Affiliations
  • 1School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • 2Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
  • show less
    Figures & Tables(11)
    SAHI framework
    Workflow of the proposed method
    Diagram of score matrix structure
    Cropping diagram
    Examples of ATL
    Effect comparison for NMS
    Effect comparison for object detection on VisDrone dataset
    • Table 1. ASAI parameter optimization experiments

      View table
      View in Article

      Table 1. ASAI parameter optimization experiments

      MethodsmAP50/%Time/ms
      YOLOv8s (常规NMS)30.154.2
      +SAHI (常规NMS, k=16)32.5284.1
      +ASAI (k=1) (常规NMS)33.2114.8
      +ASAI (k=1)33.4110.5
      +ASAI (k=2)34.0130.5
      +ASAI (k=3)34.7145.9
      +ASAI (k=4)34.7160.2
      +ASAI (k=5)34.8187.2
    • Table 2. Comparison experiments of applying ASAI in typical lightweight object detection networks on VisDrone dataset

      View table
      View in Article

      Table 2. Comparison experiments of applying ASAI in typical lightweight object detection networks on VisDrone dataset

      Methods

      mAP50/

      %

      Time/

      ms

      awning-tricycle/%

      Bicycle/

      %

      Bus/

      %

      Car/

      %

      Motor/

      %

      Pedestrian/

      %

      People/

      %

      Tricycle/

      %

      Truck/

      %

      Van/

      %

      YOLOv7-tiny27.955.15.29.236.267.832.432.327.413.525.429.2
      YOLOv8n14.851.01.31.524.458.57.813.941.34.713.418.4
      YOLOv8s30.154.28.310.546.970.930.033.116.721.529.633.4
      YOLOv9-C18.5105.62.84.829.664.810.216.96.96.316.525.9
      YOLOv7-tiny+ASAI30.6130.45.79.740.173.834.739.128.115.025.833.4
      YOLOv8n+ASAI19.599.41.92.834.168.213.722.37.66.416.421.8
      YOLOv8s+ASAI33.4110.58.611.554.775.533.138.719.623.128.337.2
      YOLOv9-C+ASAI23.1183.53.95.436.473.016.526.311.28.618.130.3
    • Table 3. Contrasts of YOLOv8s+ASAI combination method with the various new models

      View table
      View in Article

      Table 3. Contrasts of YOLOv8s+ASAI combination method with the various new models

      MethodsmAP50/%mAP(50:95)/%Parameters/M
      Faster RCNN+ARFP1333.920.442.7+
      UAV-YOLOv8s847.029.210.3
      Drone-YOLO(tiny)1442.825.65.4
      MC-YOLOv51545.526.638.2
      YOLOv8s+ASAI47.330.811.2
    • Table 4. Comparison experiments on AI-TOD dataset

      View table
      View in Article

      Table 4. Comparison experiments on AI-TOD dataset

      MethodsmAP50/%Time/ms
      YOLOv7-tiny33.143.4
      YOLOv8n28.941.9
      YOLOv8s40.144.1
      YOLOv9-C46.253.5
      YOLOv7-tiny+ASAI34.183.7
      YOLOv8n+ASAI29.879.6
      YOLOv8s+ASAI41.376.1
      YOLOv9-C+ASAI47.297.6
    Tools

    Get Citation

    Copy Citation Text

    Liwei JIN, Wangming XU, Yaoxiang LI. Object detection method for aerial images based on adaptive slicing aided inference[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(3): 472

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 4, 2024

    Accepted: --

    Published Online: Apr. 27, 2025

    The Author Email: Wangming XU (xuwangming@wust.edu.cn)

    DOI:10.37188/CJLCD.2024-0225

    Topics