Chinese Journal of Lasers, Volume. 52, Issue 3, 0307105(2025)

Lightweight Brain Tumor Segmentation Using Semantic Flow and Scale Perception

Chuanqiang Liu1, Xiaoqi Lü1,2、*, Jing Li1, and Yu Gu1
Author Affiliations
  • 1School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia , China
  • 2College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia , China
  • show less
    Figures & Tables(11)
    Overall architecture of our SAHNet model
    Structure of HDC and MHDC modules. (a) HDC module; (b) MHDC module
    FA network architecture diagram
    SAM architecture diagram
    Structure diagrams of MHXC and SAA modules. (a) MHXC module; (b) SAA module
    Brain tumor images of different modalities
    Visual comparison of segmentation results
    • Table 1. Datasets composition

      View table

      Table 1. Datasets composition

      DatasetData quantity in train datasetData quantity in valid dataset
      BraTS2020369128
      BraTS2019335125
      BraTS201828566
    • Table 2. Ablation experiment of SAHNet model

      View table

      Table 2. Ablation experiment of SAHNet model

      ModelDice /%Sensitivity /%Specificity /%95% Hausdorff distance /mm
      ETWTTCETWTTCETWTTCETWTTC
      HDC2477.1889.1481.2176.3788.5277.6499.9799.1499.9626.909.2112.83
      HDC+SAM78.3089.3181.0278.1189.4979.9799.9799.9099.9515.865.2318.24
      HDC+FA77.0489.4382.0977.4690.2981.1599.9799.9099.9520.857.1911.83
      HDC+MHDC77.8889.5580.0777.6890.4678.0399.9799.9099.9621.386.5315.63
      HDC+MHDC+FA78.0189.6380.4778.9290.8377.9499.9799.9099.9424.235.0412.29
      HDC+SAM+FA77.8889.4782.0277.6589.4979.2499.9799.9199.6524.325.8014.46
      HDC+SAM+MHDC78.0389.7680.8277.9391.3378.8299.9799.8999.9623.645.129.59
      SAHNet77.6189.5083.1378.4390.3881.2199.9799.9099.9626.579.198.38
    • Table 3. Comparative experimental results between SAHNet and different models

      View table

      Table 3. Comparative experimental results between SAHNet and different models

      TypeModelDice /%95% Hausdorff distance /mm

      NPara /

      109

      FLOPs /

      109

      ETWTTCETWTTC
      Classic network3DUNet2976.2687.7179.3729.836.7924.2316.12176.61
      V-NET1668.9786.1177.9045.5114.4916.15
      SAHNet (ours)77.6189.5083.1326.579.196.380.5241.46
      Popular networkTransBTS (2021)2078.7390.0981.7317.944.699.7615.14208.00
      SwinBTS (2022)3077.3689.0680.3026.8417.0615.7820.40
      dResUnet (2023)3180.0486.6083.5130.47374.04
      ASTNet (2022)3277.8290.4084.2117.044.699.1310.0544.1
      SAHNet (ours)77.6189.5083.1326.579.196.380.5241.46
      Lightweight networkAD-Net (2023)3376.4990.1180.5335.457.2215.315.27134.98
      DMF (2019)2376.4688.7880.4320.698.8212.3793.8827.04
      HDC (2020)2477.1889.1481.2126.909.2112.830.3124.00
      HMNet (2023)3478.1090.0781.2021.345.957.050.80129.4
      SAHNet (ours)77.6189.5083.1326.579.196.380.5241.46
    • Table 4. Comparison of SAHNet with other lightweight networks on different datasets

      View table

      Table 4. Comparison of SAHNet with other lightweight networks on different datasets

      DatasetModelDice /%95% Hausdorff distance /mmNPara /106FLOPs /109
      ETWTTCETWTTC
      BraTS2018DMF (2019)2380.1190.6184.543.064.666.443.8827.04
      HDC (2020)2480.1389.8084.592.396.865.710.3124.00
      HMNet (2023)3378.6390.1084.322.694.727.730.80129.40
      DAFANet (2023)3580.4490.0784.543.074.366.234.2330.50
      SAHNet (ours)81.7690.3085.442.374.705.310.5241.46
      BraTS2019AD-Net (2023)3276.3190.1681.5135.504.3113.425.27134.98
      DMF (2019)2376.6888.4780.193.345.416.143.8827.04
      HDC (2020) 2476.9889.1581.514.156.438.010.3124.00
      HMNet (2023)3377.2389.9383.014.015.216.570.80129.40
      DAFANet (2023)3578.1189.1581.513.074.366.224.2330.50
      SAHNet (ours)78.0989.9483.263.214.935.560.5241.46
    Tools

    Get Citation

    Copy Citation Text

    Chuanqiang Liu, Xiaoqi Lü, Jing Li, Yu Gu. Lightweight Brain Tumor Segmentation Using Semantic Flow and Scale Perception[J]. Chinese Journal of Lasers, 2025, 52(3): 0307105

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Oct. 9, 2024

    Accepted: Nov. 22, 2024

    Published Online: Jan. 17, 2025

    The Author Email: Lü Xiaoqi (lxiaoqi@imut.edu.cn)

    DOI:10.3788/CJL241254

    CSTR:32183.14.CJL241254

    Topics