Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500004(2023)

Research Progress in Surface Modification Engineering and Application of PbSe Quantum Dots

Dan Yang, Dengkui Wang*, Xuan Fang**, Dan Fang, Li Yang, Chao Xiang, Jinhua Li, and Xiaohua Wang
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, Jinlin, China
  • show less
    Figures & Tables(12)
    Schematic diagram of electronic energy levels of quantum dots (QDs) and bulk materials
    Surface modification and application of PbSe QDs
    Organic ligand exchange of PbSe QDs[32]. (a) Carrier mobility as a function of ligand length in bipolar PbSe QDs field effect transistors; (b), (c) first exciton absorption peaks of organic ligand-treated PbSe QDs films and coupling energies, electron mobilities, and optical band gaps of these films
    ALD treatment of PbSe QDs films terminated by short chain ligands. (a) Low temperature ALD fills PbSe QDs films with short chain ligands, short ligand replacement reduces barrier width between QDs, and inorganic matrix filling reduces barrier height and improves carrier mobility[43]; (b) field-effect electron mobility of filled PbSe QDs at 54 °C and 75 °C as a function of storage time in air[44]
    PbSe QDs photodetector and its performance[21]. (a) Dark I-V characteristics of PbSe QDs photodetectors covered with different ligands; (b) BDT treatment of traps in passivated QDs films
    In situ passivation treatment of PbSe QDs[26]. Transmission electron microscope (TEM) images of PbSe QDs (a) untreated and (b) treated with NH4Cl, and inset is a high resolution TEM image; schematic diagram of absorption spectra of (c) untreated and (d) treated PbSe QDs with time
    PbSe/CdSe core shell heterostructure. (a) Photoluminescence (PL) spectra of aliquots during CdSe shell formation [60]; (b), (c) time dependent PL spectra of PbSe QDs and PbSe/CdSe[70]
    Preparation of PbSe QDs solar cells[82]. (a) Schematic diagram and cross-sectional scanning electron microscope (SEM) image of solar cell treated with mixed ligands; (b) J-V curve and corresponding parameters of solar cell
    PbSe photodetector[93]. (a) Schematic diagram of structure; (b) response and sensitivity
    • Table 1. Effects of different ligands on properties of PbSe QDs

      View table

      Table 1. Effects of different ligands on properties of PbSe QDs

      LigandCarrier mobility /(cm2·V-1·s-1Carrier lifetime /nsLigand length /(10-10 m)Reference
      1,2-ethanediamine(EDA)1.612.5About 3.835
      1,4-benzenediamine(BDA)0.38About 5.635
      Hydrazine0.95-0.973436
      1,2-ethanedithiol(EDT)0.07-0.2718.5About 4.23235
      1,6-hexanedithiol(HDT)7×10-4About 8.832
      Benzenedithiol(BDT)10-4-10-3About 6.43237
      Oxalic acid(OxAc)0.41<5.0About 3.535
      Formic acid(FoAc)(2.3±0.4)×10-233
      Acetic acid(AcAc)(6.3±0.3)×10-333
      Butanedioic acid(BuAc)0.04About 6.135
      Methoxide(MeO-0.3<7.52-33538
    • Table 2. Improvement of fluorescence quantum yield and stability of PbSe QDs by surface passivation technology

      View table

      Table 2. Improvement of fluorescence quantum yield and stability of PbSe QDs by surface passivation technology

      MaterialFluorescence quantum yield /%Photostability or storage timeSynthesisReference
      PbSe/SnSe2.92-4 minSILAR68
      PbSe/SnS1.01-2 minSILAR68-69
      PbSe/CdSe81Several monthsCation exchange60
      PbSe/CdSe7011 dSILAR70
      PbSe/CdSe> 60Cation exchange61
      PbSe/PbS> 60200 minSILAR65
      PbSe/PbS55SILAR64
      PbSe/CdSe/ZnSe21 dSILAR62
      PbSe/CdSe/CdSe18Cation exchange +SILAR72
      PbSe/CdSe/ZnS48Cation exchange +SILAR60
    • Table 3. Applications of PbSe QDs in solar cells

      View table

      Table 3. Applications of PbSe QDs in solar cells

      YearQDs surface modificationOpen circuit voltage /VShort circuit current Jsc /(mA.cm-2Fill factor /%Power conversion efficiency /%Reference
      2013PbSe/PbS0.47517.3643.03.9383
      2014Cd2+,Cl-0.51723.4051.96.2080
      2014Zn2+,I-0.52824.0050.66.4787
      2015PbSe/PbS0.46011.8049.06.5084
      2015PbSe/CdSe0.36025.203.9386
      2015PbSe/CdSe0.43020.003.6085
      2016Cl-,I-0.43018.1045.43.5388
      2017CsPbBr30.53025.1061.58.207
      2018Cd2+,Cl-,I-0.50326.7058.87.9089
      2018CsPbBr0.5I1.50.56025.7064.09.2090
      2019Cd2+,Cl-,I-0.57328.1066.310.6881
      2019I-0.54028.4068.010.4091
      2021I-,Br-,Cd2+0.3476.7854.61.3182
    Tools

    Get Citation

    Copy Citation Text

    Dan Yang, Dengkui Wang, Xuan Fang, Dan Fang, Li Yang, Chao Xiang, Jinhua Li, Xiaohua Wang. Research Progress in Surface Modification Engineering and Application of PbSe Quantum Dots[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 16, 2022

    Accepted: Aug. 4, 2022

    Published Online: Aug. 11, 2023

    The Author Email: Dengkui Wang (wangdk@cust.edu.cn), Xuan Fang (fangxuan110@126.com)

    DOI:10.3788/LOP221857

    Topics