Infrared and Laser Engineering, Volume. 50, Issue 11, 20210521(2021)

Landau-Zenner-Stückelberg interference of phonons in a cavity optomechanical systems (Invited)

Chengyu Shen1,2, Zhicheng Gong1, Tianhua Mao1, Quan Yuan1,2, Yong Li3, and Hao Fu1
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Computational Science Research Center, Beijing 100193, China
  • show less
    References(17)

    [1] Bagci T, Simonsen A, Schmid S, et al. Optical detection of radio waves through a nanomechanical transducer[J]. Nature, 507(7490), 81-85(2014).

    [2] Palomaki T A, Harlow J W, Teufel J D, et al. Coherent state transfer between itinerant microwave fields and a mechanical oscillator[J]. Nature, 495(7440), 210-214(2013).

    [3] Chan J, Alegre T P, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 478(7367), 89-92(2011).

    [4] O'Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 464(7289), 697-703(2010).

    [5] Okamoto H, Gourgout A, Chang C Y, et al. Coherent phonon manipulation in coupled mechanical resonators[J]. Nature Physics, 9(8), 480-484(2013).

    [6] Zhu D, Wang X H, Kong W C, et al. Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity[J]. Nano Letters, 17(2), 915-921(2017).

    [7] Tian T, Lin S, Zhang L, et al. Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network[J]. Phys Rev B, 101(17), 174303(2020).

    [8] Zhang Z Z, Song X X, Luo G, et al. Coherent phonon dynamics in spatially seperated graphene mechanical resonators[J]. PNAS, 117(11), 5582(2020).

    [9] Landau L D. A theory of energy transfer on collisions[J]. Phys Z Sowjet, 1, 52-59(1932).

    [10] [10] Zener C. Nonadiabatic crossing of energy levels [C] Proceedings of the Royal Society of London, 1932, 137(833): 696702.

    [11] Shevchenko S N, Ashhab S, Nori F. Landau–Zener–Stückelberg interferometry[J]. Physics Reports, 492(1), 1-30(2010).

    [12] Ashhab S, Johansson J R, Zagoskin A M, et al. Two-level systems driven by large-amplitude fields[J]. Physical Review A, 75, 063414(2007).

    [13] Yang Z X, Zhang Y M, Zhou Y X, et al. Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit[J]. Chinese Physics B, 30, 024212(2021).

    [14] Kervinen M, Ramirez-Munoz J E, Valimaa A, et al. Landau-Zener-Stückelberg interference in a multimode electromechanical system in the quantum regime[J]. Phys Rev Lett, 123, 240401(2019).

    [15] Oliver W D, Yu Y, Lee J, et al. Mach-Zehnder interferometry in a strongly driven superconducting qubit[J]. Science, 310(5754), 1653-1657(2005).

    [16] Fu H, Gong Z C, Yang L P, . et al. Coherent optomechanical switch for motion transduction based on dynamically localized mechanical modes[J]. Phys Rev Appl, 9, 054024(2018).

    [17] Zhou L, Yang S, Liu Y X, et al. Quantum Zeno switch for single-photon coherent transport[J]. Phys Rev A, 80(6), 062109(2009).

    Tools

    Get Citation

    Copy Citation Text

    Chengyu Shen, Zhicheng Gong, Tianhua Mao, Quan Yuan, Yong Li, Hao Fu. Landau-Zenner-Stückelberg interference of phonons in a cavity optomechanical systems (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210521

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Advanced technology of microcavity photonics materials and devices

    Received: May. 20, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20210521

    Topics