Journal of Optoelectronics · Laser, Volume. 35, Issue 9, 897(2024)

High-performance optical synaptic devices based on 2D organic crystals

LIU Yilong1,2, LI Hui1,2, SU Linlin1, LI Xinwei1,2, YANG Chengdong1,2, and CHENG Qimei2
Author Affiliations
  • 1School of Electronic & Informatio Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
  • 2School of Electronic Information Engineering, Wuxi University, Wuxi, Jiangsu 214105, China
  • show less
    References(24)

    [1] [1] WANG Y, YU L, WU S, et al. Memristor-based biologically plausible memory based on discrete and continuous attractor networks for neuromorphic systems[J]. Advanced Intelligent Systems, 2020, 2(3): 2000001.

    [2] [2] LEE Y, LEE T W. Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics[J]. Accounts of Chemical Research, 2019, 52(4): 964-974.

    [3] [3] WEI H, NI Y, SUN L, et al. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior[J]. Nano Energy, 2021, 81:105648.

    [4] [4] XIONG L, WANG X, ZHANG X G, et al. Dynamic behavior analysis, color image encryption and circuit implementation of a novel complex memristive system[J]. Optoelectronics Letters, 2024, 35(3): 183-192.

    [5] [5] MIN S Y, CHO W J. CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer[J]. Scientific Reports, 2020, 10(1): 15561.

    [6] [6] WAN Q, SHARBATI M T, ERICKSON J R, et al. Emerging artificial synaptic devices for neuromorphic computing[J]. Advanced Materials Technologies, 2019, 4(4): 1900037.

    [7] [7] DALGATY T, ESMANHOTTO E, CASTELLANI N, et al. Ex situ transfer of Bayesian neural networks to resistive memory-based inference hardware[J]. Advanced Intelligent Systems, 2021, 3(8): 2000103.

    [8] [8] VAN DE BURGT Y, MELIANAS A, KEENE S T, et al. Organic electronics for neuromorphic computing[J]. Nature Electronics, 2018, 1(7): 386-397.

    [9] [9] JOSHI V, LE GALLO M, HAEFELI S, et al. Accurate deep neural network inference using computational phase-change memory[J]. Nature Communications, 2020, 11(1): 2473.

    [10] [10] ALKAN M, YAVUZ I. Intrinsic charge-mobility in benzothieno [3, 2-b][1] benzothiophene (BTBT) organic semiconductors is enhanced with long alkyl side-chains[J]. Physical Chemistry Chemical Physics, 2018, 20(23): 15970-15979.

    [11] [11] QIAN J, JIANG S, LI S, et al. Solution-processed 2D molecular crystals: fabrication techniques, transistor applications, and physics[J]. Advanced Materials Technologies, 2019, 4(5): 1800182.

    [12] [12] YANG C, QIAN J, JIANG S, et al. An optically modulated organic Schottky-barrier planar-diode-based artificial synapse[J]. Advanced Optical Materials, 2020, 8(13): 2000153.

    [13] [13] LI Y, LIU C, LEE M V, et al. In situ purification to eliminate the influence of impurities in solution-processed organic crystals for transistor arrays[J]. Journal of Materials Chemistry C, 2013, 7(1): 1352-1358.

    [14] [14] ISLAND J O, BLANTER S I, BUSCEMA M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12): 7853-7858.

    [15] [15] FELDMAN D E. The spike-timing dependence of plasticity[J]. Neuron, 2012, 75(4): 556-571.

    [16] [16] GAO S, LIU G, YANG H, et al. An oxide schottky junction artificial optoelectronic synapse[J]. ACS Nano, 2019, 13(2): 2634-2642.

    [17] [17] TSAI M Y, LEE K C, LIN C Y, et al. Photoactive electro-controlled visual perception memory for emulating synaptic metaplasticity and hebbian learning[J]. Advanced Functional Materials, 2021, 31(40): 2105345.

    [18] [18] LEE M, LEE W, CHOI S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity[J]. Advanced Materials, 2017, 29(28): 1700951.

    [19] [19] LIU Y H, ZHU L Q, FENG P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes[J]. Advanced Materials, 2015, 27(37): 5599-5604.

    [20] [20] ZUCKER R S, REGEHR W G. Short-term synaptic plasticity[J]. Annual Review of Physiology, 2002, 64(1): 355-405.

    [21] [21] LEE G, BAEK J H, REN F, et al. Artificial neuron and synapse devices based on 2D materials[J]. Small, 2021, 17(20): 2100640.

    [22] [22] YIN X B, YANG R, XUE K H, et al. Mimicking the brain functions of learning, forgetting and explicit/implicit memories with SrTiO3-based memristive devices[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31796-31802.

    [23] [23] MURRE J M J, DROS J. Replication and analysis of ebbinghaus' forgetting curve[J]. PLoS One, 2015, 10(7): e0120644.

    [24] [24] KONG L, SUN J, QIAN C, et al. Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors[J]. Organic Electronics, 2017, 47:126-132.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yilong, LI Hui, SU Linlin, LI Xinwei, YANG Chengdong, CHENG Qimei. High-performance optical synaptic devices based on 2D organic crystals[J]. Journal of Optoelectronics · Laser, 2024, 35(9): 897

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 15, 2023

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email:

    DOI:10.16136/j.joel.2024.09.0592

    Topics