Optics and Precision Engineering, Volume. 30, Issue 16, 1988(2022)

Scene recognition for 3D point clouds: a review

Wen HAO1,2、*, Wenjing ZHANG1,2, Wei LIANG1,2, Zhaolin XIAO1,2, and Haiyan JIN1,2
Author Affiliations
  • 1School of Computer Science and Engineering, Xi'an University of Technology, Xi'an70048, China
  • 2Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an710048, China
  • show less
    References(76)

    [1] XIE L, LEE F F, LIU L et al. Scene recognition: a comprehensive survey[J]. Pattern Recognition, 102, 107205(2020).

    [2] ZHANG X W, WANG L, SU Y. Visual place recognition: a survey from deep learning perspective[J]. Pattern Recognition, 113, 107760(2021).

    [3] ZENG H T, SONG X H, CHEN G W et al. Learning scene attribute for scene recognition[J]. IEEE Transactions on Multimedia, 22, 1519-1530(2020).

    [4] CHEN G, SONG X, ZENG H et al. Scene recognition with prototype-agnostic scene layout[J]. IEEE Transactions on Image Processing, 29, 5877-5888(2020).

    [5] ZENG H T, SONG X H, CHEN G W et al. Amorphous region context modeling for scene recognition[J]. IEEE Transactions on Multimedia, 24, 141-151(2022).

    [6] MADDERN W, PASCOE G, LINEGAR C et al. 1 year, 1000 km: the Oxford RobotCar dataset[J]. The International Journal of Robotics Research, 36, 3-15(2017).

    [7] SONG X H, JIANG S Q, WANG B H et al. Image representations with spatial object-to-object relations for RGB-D scene recognition[J]. IEEE Transactions on Image Processing, 29, 525-537(2020).

    [8] DUBÉ R, DUGAS D, STUMM E et al. SegMatch: Segment based place recognition in 3D point clouds[C], 5266-5272(2017).

    [9] FERNÁNDEZ-MORAL E, MAYOL-CUEVAS W, ARÉVALO V et al. Fast place recognition with plane-based maps[C], 2719-2724(2013).

    [10] FAN Y F, HE Y C, TAN U X. Seed: a segmentation-based egocentric 3D point cloud descriptor for loop closure detection[C], 5158-5163(2020).

    [11] DUBÉ R, CRAMARIUC A, DUGAS D et al. SegMap: Segment-based mapping and localization using data-driven descriptors[J]. The International Journal of Robotics Research, 39, 339-355(2020).

    [12] TOMONO M. Loop detection for 3D LiDAR SLAM using segment-group matching[J]. Advanced Robotics, 34, 1530-1544(2020).

    [13] BOSSE M, ZLOT R. Place recognition using keypoint voting in large 3D lidar datasets[C], 2677-2684(2013).

    [14] CIESLEWSKI T, STUMM E, GAWEL A et al. Point cloud descriptors for place recognition using sparse visual information[C], 4830-4836(2016).

    [15] HE L, WANG X L, ZHANG H. M2DP: a novel 3D point cloud descriptor and its application in loop closure detection[C], 231-237(2016).

    [16] ZHANG W X, XIAO C X. PCAN: 3D attention map learning using contextual information for point cloud based retrieval[C], 12428-12437(2019).

    [17] XIA Y, XU Y S, LI S et al. SOE-net: a self-attention and orientation encoding network for point cloud based place recognition[C], 11343-11352(2021).

    [19] LIU Z, ZHOU S B, SUO C Z et al. LPD-net: 3D point cloud learning for large-scale place recognition and environment analysis[C], 2831-2840(2019).

    [20] LIU Z, SUO C Z, ZHOU S B et al. SeqLPD: sequence matching enhanced loop-closure detection based on large-scale point cloud description for self-driving vehicles[C], 1218-1223(2019).

    [21] YIN P, WANG F Y, EGOROV A et al. SeqSphereVLAD: sequence matching enhanced orientation-invariant place recognition[C], 5024-5029(2020).

    [22] YIN P, WANG F Y, EGOROV A et al. Fast sequence-matching enhanced viewpoint-invariant 3-D place recognition[J]. IEEE Transactions on Industrial Electronics, 69, 2127-2135(2022).

    [23] CHANG M Y, YEON S et al. SpoxelNet: spherical voxel-based deep place recognition for 3D point clouds of crowded indoor spaces[C], 8564-8570(2020).

    [24] KOMOROWSKI J. MinkLoc3D: point cloud based large-scale place recognition[C], 1789-1798(2021).

    [27] GOLLUB M G, DUBÉ R, SOMMER H et al. A partitioned approach for efficient graph-based place recognition[C], 1-5(2017).

    [28] [28] 28廖瑞杰, 杨绍发, 孟文霞, 等. SegGraph: 室外场景三维点云闭环检测算法[J]. 计算机研究与发展, 2019, 56(2): 338-348.LIAOR J, YANGS F, MENGW X, et al. SegGraph: an algorithm for loop-closure detection in outdoor scenes using 3D point clouds[J]. Journal of Computer Research and Development, 2019, 56(2): 338-348.(in Chinese)

    [29] FERNÁNDEZ-MORAL E, RIVES P, ARÉVALO V et al. Scene structure registration for localization and mapping[J]. Robotics and Autonomous Systems, 75, 649-660(2016).

    [30] VIDANAPATHIRANA K, MOGHADAM P, HARWOOD B et al. Locus: LiDAR-based place recognition using spatiotemporal higher-order pooling[J]. 2021 IEEE International Conference on Robotics and Automation (ICRA), 5075-5081(2021).

    [31] ROZENBERSZKI D, MAJDIK A L. LOL: Lidar-only Odometry and Localization in 3D point cloud maps[C], 4379-4385(2020).

    [32] JOHNSON A E, HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 433-449(1999).

    [33] SALTI S, TOMBARI F, DI STEFANO L. SHOT: Unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 125, 251-264(2014).

    [34] TOMBARI F, SALTI S, STEFANO L D. Unique shape context for 3d data description[C], 57-62(2010).

    [35] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C], 3212-3217(2009).

    [36] ALDOMA A, VINCZE M, BLODOW N et al. CAD-model recognition and 6DOF pose estimation using 3D cues[C], 585-592(2011).

    [37] FENG G H, LIU Y, LIAO Y Y. LOIND: an illumination and scale invariant RGB-D descriptor[C], 1893-1898(2015).

    [38] LOGOGLU K B, KALKAN S, TEMIZEL A. CoSPAIR: Colored Histograms of Spatial Concentric Surflet-Pairs for 3D object recognition[J]. Robotics and Autonomous Systems, 75, 558-570(2016).

    [39] YU M F, ZHANG L, WANG W F et al. Loop closure detection by using global and local features with photometric and viewpoint invariance[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 30, 8873-8885(2021).

    [40] PERDOMO L, PITTOL D, MANTELLI M et al. C-M2DP: a fast point cloud descriptor with color information to perform loop closure detection[C], 1145-1150(2019).

    [41] RÖHLING T, MACK J, SCHULZ D. A fast histogram-based similarity measure for detecting loop closures in 3-D LIDAR data[C], 736-741(2015).

    [42] RIZZINI D L. Place recognition of 3D landmarks based on geometric relations[C], 648-654(2017).

    [43] RIZZINI D L, GALASSO F, CASELLI S. Geometric relation distribution for place recognition[J]. IEEE Robotics and Automation Letters, 4, 523-529(2019).

    [44] KIM G, KIM A. Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map[C], 4802-4809(2018).

    [45] KIM G, PARK B, KIM A. 1-day learning, 1-year localization: long-term LiDAR localization using scan context image[J]. IEEE Robotics and Automation Letters, 4, 1948-1955(2019).

    [46] WANG H, WANG C, XIE L H. Intensity scan context: coding intensity and geometry relations for loop closure detection[C], 2095-2101(2020).

    [47] LI L, KONG X, ZHAO X R et al. SSC: semantic scan context for large-scale place recognition[C], 2092-2099(2021).

    [48] SIVA S, NAHMAN Z, ZHANG H. Voxel-based representation learning for place recognition based on 3D point clouds[C], 8351-8357(2020).

    [49] GUO J D, BORGES P V K, PARK C et al. Local descriptor for robust place recognition using LiDAR intensity[J]. IEEE Robotics and Automation Letters, 4, 1470-1477(2019).

    [50] SHI W J, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C], 1708-1716(2020).

    [51] [51] 51王张飞, 刘春阳, 隋新, 等. 基于深度投影的三维点云目标分割和碰撞检测[J]. 光学 精密工程, 2020, 28(7): 1600-1608. doi: 10.37188/OPE.20202807.1600WANGZ F, LIUC Y, SUIX, et al. Three-dimensional point cloud object segmentation and collision detection based on depth projection[J]. Opt. Precision Eng., 2020, 28(7): 1600-1608.(in Chinese). doi: 10.37188/OPE.20202807.1600

    [52] LI R H, LI X Z, HENG P A et al. PointAugment: an auto-augmentation framework for point cloud classification[C], 6377-6386(2020).

    [53] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).

    [54] [54] 54杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199.YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese)

    [55] [55] 55赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612. doi: 10.3788/OPE.20192707.1601ZHAOC, ZHANGB M, YUD H, et al. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612.(in Chinese). doi: 10.3788/OPE.20192707.1601

    [56] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [57] QI C R, YI L, SU H et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems., 5099-5108(2017).

    [58] UY M A, LEE G H. PointNetVLAD: deep point cloud based retrieval for large-scale place recognition[C], 4470-4479(2018).

    [59] SUN Q, LIU H Y, HE J et al. DAGC: employing dual attention and graph convolution for point cloud based place recognition[C], 224-232(2020).

    [60] FAN Z X, LIU H Y, HE J et al. SRNet: a 3D scene recognition network using static graph and dense semantic fusion[J]. Computer Graphics Forum, 39, 301-311(2020).

    [61] KONG X, YANG X M, ZHAI G Y et al. Semantic graph based place recognition for 3D point clouds[C], 8216-8223(2020).

    [63] HUI L, CHENG M M, XIE J et al. Efficient 3D point cloud feature learning for large-scale place recognition[J]. IEEE Transactions on Image Processing, 31, 1258-1270(2022).

    [64] DU J, WANG R, CREMERS D[M]. DH3D: deep hierarchical 3D descriptors for robust large-scale 6DoF relocalization, 744-762(2020).

    [65] GONG Y S, SUN F C, YUAN J et al. A two-level framework for place recognition with 3D LiDAR based on spatial relation graph[J]. Pattern Recognition, 120, 108171(2021).

    [66] ZHOU Z C, ZHAO C, ADOLFSSON D et al. NDT-transformer: large-scale 3D point cloud localisation using the normal distribution transform representation[J]. 2021 IEEE International Conference on Robotics and Automation (ICRA), 5654-5660(2021).

    [67] HUI L, YANG H, CHENG M M et al. Pyramid point cloud transformer for large-scale place recognition[C], 6078-6087(2021).

    [68] ARANDJELOVIC R, GRONAT P, TORII A et al. NetVLAD: CNN architecture for weakly supervised place recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1437-1451(2018).

    [69] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[J]. In Advances in neural information processing systems, 5998-6008(2017).

    [70] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?[C], 3354-3361(2012).

    [71] GEIGER A, LENZ P, STILLER C et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 32, 1231-1237(2013).

    [72] CARLEVARIS-BIANCO N, USHANI A K, EUSTICE R M. University of Michigan north campus long-term vision and lidar dataset[J]. The International Journal of Robotics Research, 35, 1023-1035(2016).

    [73] KIM G, PARK Y S, CHO Y et al. MulRan: multimodal range dataset for urban place recognition[C], 6246-6253(2020).

    [74] PANDEY G, MCBRIDE J R, EUSTICE R M. Ford Campus vision and lidar data set[J]. The International Journal of Robotics Research, 30, 1543-1552(2011).

    [75] SUO C Z, LIU Z, MO L F et al. LPD-AE: latent space representation of large-scale 3D point cloud[J]. IEEE Access, 8, 108402-108417(2020).

    [76] [76] 76杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585.YANGB S, DONGZ. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1575-1585.(in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Wen HAO, Wenjing ZHANG, Wei LIANG, Zhaolin XIAO, Haiyan JIN. Scene recognition for 3D point clouds: a review[J]. Optics and Precision Engineering, 2022, 30(16): 1988

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Nov. 27, 2021

    Accepted: --

    Published Online: Sep. 22, 2022

    The Author Email: Wen HAO (haowensxsf@163.com)

    DOI:10.37188/OPE.20223016.1988

    Topics