Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1610004(2021)

Multitarget Tracking Algorithm Based on an Improved YOLOv3 Algorithm

Xiangsheng Zhang* and Qing Shen
Author Affiliations
  • School of Internet of Things Engineering, Key Laboratory of Advanced Control of Light Industry Process, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    Figures & Tables(14)
    Structure of standard convolution filters
    Structure of depthwise convolution filters
    Structure of pointwise convolution filters
    SENet structure
    Improved YOLOv3 network model structure diagram
    Multi-target tracking algorithm flow
    Intersection-over-union of different number of anchors
    Comparison of algorithm tracking results based on MOT15-PETS09 sequence. (a) YOLOv3-Deep-SORT tracking results; (b) our algorithm tracking results
    Comparison of algorithm tracking results based on MOT16-06 sequence. (a) YOLOv3-Deep-SORT tracking results; (b) our algorithm tracking results
    Comparison of algorithm tracking results based on ETHZ-eth02 sequence. (a) YOLOv3-Deep-SORT tracking results; (b) our algorithm tracking results
    • Table 1. Size of a priori boxes with different numbers of a priori boxes

      View table

      Table 1. Size of a priori boxes with different numbers of a priori boxes

      k=7k=8k=9k=10k=11
      (18,69)(17,70)(16,69)(18,40)(18,72)
      (26,82)(23,62)(18,40)(18,75)(20,40)
      (28,64)(25,81)(20,80)(23,64)(23,80)
      (33,96)(31,72)(23,64)(25,83)(26,64)
      (34,74)(33,92)(26,82)(31,73)(28,80)
      (41,85)(38,77)(31,72)(33,99)(34,89)
      (49,113)(43,94)(33,94)(37,86)(34,72)
      (52,122)(39,79)(38,74)(36,105)
      (46,107)(46,101)(38,85)
      (62,132)(44,83)
      (51,114)
    • Table 2. Target detection algorithm performance comparison results

      View table

      Table 2. Target detection algorithm performance comparison results

      Detection algorithmAvgmisrate /%F1 /%FPS
      Faster RCNN32.1588.575.52
      YOLOv327.8095.4115.65
      Our algorithm13.6096.5622.35
    • Table 3. Comparison of the indicators of the test set on different sequences

      View table

      Table 3. Comparison of the indicators of the test set on different sequences

      SequenceAMOT /% ↑PMOT /% ↑sIDFN↓
      Venice-155.177.6411212
      KITTI-1930.269.4911626
      KITTI-1640.871.933619
      ETH-Crossing66.380.415252
      PETS09-S2L255.673.11772938
      TUD-Crossing76.872.821202
    • Table 4. Comparison of evaluation indexes of multi-target tracking algorithms

      View table

      Table 4. Comparison of evaluation indexes of multi-target tracking algorithms

      AlgorithmAMOT /% ↑PMOT /% ↑sIDFPS↑
      YOLOv3-SORT46.861.9102
      Faster RCNN-Deep-SORT35.356.572
      YOLOv3-Deep-SORT54.868.0682.8
      YOLOv3-Kalman[14]39.266.2107
      SiamCNN[15]45.370.4105
      MOTDT[22]57.375.370
      MDP[23]46.471.393
      Our algorithm56.078.2574.4
    Tools

    Get Citation

    Copy Citation Text

    Xiangsheng Zhang, Qing Shen. Multitarget Tracking Algorithm Based on an Improved YOLOv3 Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1610004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 10, 2020

    Accepted: Dec. 8, 2020

    Published Online: Aug. 19, 2021

    The Author Email: Xiangsheng Zhang (zxs@jiangnan.edu.cn)

    DOI:10.3788/LOP202158.1610004

    Topics