Journal of Synthetic Crystals, Volume. 53, Issue 7, 1136(2024)

Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field

LI Haoqing and SU Yu*
Author Affiliations
  • [in Chinese]
  • show less
    References(43)

    [1] [1] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(5814): 954-959.

    [2] [2] QI J B, XIE X Y, LEE Z X. Research progress on preparation of flexible inorganic ferroelectric thin film and its application in memory field[J]. Journal of Synthetic Crystals, 2023, 52(3): 380-393 (in Chinese).

    [3] [3] LIU D, WANG J, WANG J S, et al. Phase field simulation of epitaxial strain manipulating domain structure and ferroelectric properties in PbZr(1-x)TixO3 thin films[J]. Acta Physica Sinica, 2020, 69(12): 127801 (in Chinese).

    [4] [4] XI S, SU Y. A phase field study of the grain-size effect on the thermomechanical behavior of polycrystalline NiTi thin films[J]. Acta Mechanica, 2021, 232(11): 4545-4566.

    [5] [5] YANG S M, JO J Y, KIM T H, et al. Ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops[J]. Physical Review B, 2010, 82(17): 174125.

    [6] [6] CHEN X, DONG X, CAO F, et al. Field and frequency dependence of the dynamic hysteresis in lead zirconate titanate solid solutions [J]. Journal of the American Ceramic Society, 2014, 97(1): 213-219.

    [7] [7] HOSSAIN M E, LIU S, O'BRIEN S, LI J. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature[J]. Applied Physics Letters, 2015, 107(3): 032904.

    [8] [8] MAI M, LESCHHORN A, KLIEM H. The field and temperature dependence of hysteresis loops in P(VDF-TrFE) copolymer films[J]. Physica B: Condensed Matter, 2015, 456: 306-311.

    [9] [9] SU Y, KANG H, WANG Y, et al. Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics[J]. Physical Review B, 2017, 95(5): 054121.

    [10] [10] PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical review letters, 1998, 80(9): 1988-1991.

    [11] [11] PERTSEV N A, ZEMBILGOTOV A G. Domain populations in epitaxial ferroelectric thin films: theoretical calculations and comparison with experiment[J]. Journal of Applied Physics, 1996, 80(11): 6401-6406.

    [12] [12] LI Q, ZHANG P Z, LV J B, et al. Electromechanical coupling performance of (111)-oriented 0.7PMN-0.3PT thin film[J]. Journal of Synthetic Crystals, 2022, 51(1): 112-119 (in Chinese).

    [13] [13] LI Y L, HU S Y, LIU Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films[J]. Acta Materialia, 2002, 50(2): 395-411.

    [14] [14] GUO L, JIANG L, ZHOU Y. Impact of interface misfit strain on the movement and tilt angles of the domain wall in ferroelectric thin films[J]. International Journal of Modern Physics B, 2016, 30(24): 1650173.

    [15] [15] CHOUDHURY S, LI Y L, CHEN L Q, et al. Strain effect on coercive field of epitaxial Barium titanate thin films[J]. Applied Physics Letters, 2008, 92(14).

    [16] [16] YUE W F, YU L, GUO Q S, et al. Strain tuning of multiferroic materials[J]. Journal of Synthetic Crystals, 2022, 51(1): 154-169 (in Chinese).

    [17] [17] XIA Y H, YANG Z Q, ZHOU L L, et al. Thermoelectric properties of the novel thermoelectric material Y2Te3 through strain modulation[J]. Journal of Synthetic Crystals, 2023, 52(8): 1422-1431 (in Chinese).

    [18] [18] CAHN J, ALLEN S. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics[J]. Le Journal de Physique Colloques, 1977, 38(C7): C7-51-C7-54.

    [19] [19] ZHANG M R, SU Y. The frequency-dependent polarization switching in nanograined BaTiO3 films under high-strength electric field[J]. International Journal of Smart and Nano Materials, 2023, 14(2): 155-169.

    [20] [20] ZHANG M R, SU Y. The negative dielectric permittivity of polycrystalline barium titanate nanofilms under high-strength kHz-AC fields[J]. International Journal of Solids and Structures, 2022, 254: 111939.

    [21] [21] ZHOU Y G, PENG J L, PAN K, et al. An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics[J]. Science China Technological Sciences, 2016, 59: 1059-1064.

    [22] [22] CHEN W, LIU J, MA L, et al. Mechanical switching of ferroelectric domains beyond flexoelectricity[J]. Journal of Mechanics Physics of Solids, 2018, 111: 43-66.

    [23] [23] YU H, WANG J, KOZINOV S, et al. Phase field analysis of crack tip parameters in ferroelectric polycrystals under large-scale switching[J]. Acta Materialia, 2018, 154: 334-342.

    [24] [24] NI Y, KHACHATURYAN A G. Giant anhysteretic response of ferroelectric solid solutions with morphotropic boundaries: the role of polar anisotropy[J]. Acta Mechanica Solida Sinica, 2012, 25(4): 429-440.

    [25] [25] LEVANYUK A P, BURC MISIRLIOGLU I, BARIS OKATAN M. Landau, Ginzburg, Devonshire and others[J]. Ferroelectrics, 2020, 569(1): 310-323.

    [26] [26] SU Y, LANDIS C M. Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(2): 280-305.

    [27] [27] WANG J, CHEN Z, SHIMADA T, et al. Unusual domain evolution in semiconducting ferroelectrics: a phase field study[J]. Physics Letters A, 2013, 377(25-27): 1643-1648.

    [28] [28] FRIED E, GURTIN M E. Continuum theory of thermally induced phase transitions based on an order parameter[J]. Physica D: Nonlinear Phenomena, 1993, 68(3-4): 326-343.

    [29] [29] FRIED E, GURTIN M E. Dynamic solid-solid transitions with phase characterized by an order parameter[J]. Physica D: Nonlinear Phenomena, 1994, 72(4): 287-308.

    [30] [30] GURTIN M E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[J]. Physica D, 1996, 92(3-4): 178-192.

    [31] [31] HONG L, SOH A K, SONG Y C, et al. Interface and surface effects on ferroelectric nano-thin films[J]. Acta Materialia, 2008, 56(13): 2966-2974.

    [32] [32] WANG Y L, WANG X Y, CHU L Z, et al. Simulation of the initial polarization curves and hysteresis loops for ferroelectric films by an extensive time-dependent Ginzburg-Landau model[J]. Journal of Materials Science, 2011, 46(8): 2695-2699.

    [33] [33] HOSSAIN M E, LIU S Y, O’BRIEN S, et al. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature[J]. Applied Physics Letters, 2015, 107(3).

    [34] [34] LIU J M, YU L C, YUAN G L, et al. Dynamic hysteresis of ferroelectric Pb(Zr0. 52Ti0. 48)O3 thin films[J]. Microelectronic engineering, 2003, 66(1-4): 798-805.

    [35] [35] LIU J M, PAN B, YU H, et al. Dynamic hysteresis dispersion scaling of ferroelectric Nd-substituted Bi4Ti3O12 thin films[J]. Journal of Physics: Condensed Matter, 2004, 16(8): 1189.

    [36] [36] PAN B, YU H, WU D, et al. Dynamic response and hysteresis dispersion scaling of ferroelectric SrBi2Ta2O9 thin films[J]. Applied Physics Letters, 2003, 83(7): 1406-1408.

    [37] [37] GARCIA V, FUSIL S, BOUZEHOUANE K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states[J]. Nature, 2009, 460: 81-84.

    [38] [38] WEN Z, QIU X, LI C, et al. Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: the effects of epitaxial strain[J]. Applied Physics Letters, 2014, 104(4).

    [39] [39] LIU Y, WEI J, LOU X, et al. Influence of epitaxial strain on elastocaloric effect in ferroelectric thin films[J]. Applied Physics Letters, 2015, 106(3): 032901.

    [40] [40] CHOI K J, BIEGALSKI M, LI Y, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films[J]. Science, 2004, 306(5698): 1005-1009.

    [41] [41] SANG Y L, LIU B, FANG D N. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J]. Computational Materials Science, 2008, 44(2): 404-410.

    [42] [42] PERTSEV N A, RODRGUEZ CONTRERAS J, KUKHAR V G, et al. Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films[J]. Applied Physics Letters, 2003, 83(16): 3356-3358.

    [43] [43] FEDELI P, CUNEO F, MAGAGNIN L, et al. On the simulation of the hysteresis loop of polycrystalline PZT thin films[J]. Smart Materials and Structures, 2020, 29(9): 095007.

    Tools

    Get Citation

    Copy Citation Text

    LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field[J]. Journal of Synthetic Crystals, 2024, 53(7): 1136

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 8, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: SU Yu (adamyusu@bit.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics