Chinese Journal of Lasers, Volume. 43, Issue 12, 1200001(2016)
Multimodality Intravascular Imaging Technologies Based on Optical System
[1] [1] Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options[J]. Nature Medicine, 2011, 17(11): 1410-1422.
[2] [2] Virmani R, Kolodgie F D, Burke A P, et al. Atherosclerotic plaque progression and vulnerability to rupture angiogenesis as a source of intraplaque hemorrhage[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25(10): 2054-2061.
[3] [3] Narula J, Strauss H W. Imaging of unstable atherosclerotic lesions[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32(1): 1-5.
[4] [4] Narula J, Strauss H W. The popcorn plaques[J]. Nature Medicine, 2007, 13(5): 532-534.
[5] [5] Virmani R, Burke A P, Farb A, et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology, 2006, 47(8s): C13-C18.
[6] [6] Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy[J]. Journal of the American College of Cardiology, 2007, 50(10): 933-939.
[7] [7] Tearney G J, Jang I K, Bouma B E. Optical coherence tomography for imaging the vulnerable plaque[J]. Journal of Biomedical Optics, 2006, 11(2): 021002.
[8] [8] Low A F, Tearney G J, Bouma B E, et al. Technology insight: optical coherence tomography—current status and future development[J]. Nature Clinical Practice Cardiovascular Medicine, 2006, 3(3): 154-162.
[9] [9] Fujimoto J G, Schmitt J M, Swanson E A, et al. The development of OCT[M]. //Jang I K. Cardiovascular OCT imaging. London: Springer, 2015: 1-21.
[10] [10] Kawasaki M, Bouma B E, Bressner J, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques[J]. Journal of the American College of Cardiology, 2006, 48(1): 81-88.
[11] [11] Rieber J, Meissner O, Babaryka G, et al. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology[J]. Coronary Artery Disease, 2006, 17(5): 425-430.
[12] [12] Sawada T, Shite J, Garcia-Garcia H M, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma[J]. European Heart Journal, 2008, 29(9): 1136-1146.
[13] [13] Fujii K, Hao H, Shibuya M, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study[J]. JACC: Cardiovascular Imaging, 2015, 8(4): 451-460.
[14] [14] Rber L, Heo J H, Radu M D, et al. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques[J]. EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2012, 8(1): 98-108.
[15] [15] Yin J C, Yang H C, Li X, et al. Integrated intravascular optical coherence tomography ultrasound imaging system[J]. Journal of Biomedical Optics, 2010, 15(1): 010512.
[16] [16] Li X, Yin J C, Hu C H, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe[J]. Applied Physics Letters, 2010, 97(13): 133702.
[17] [17] Yang H C, Yin J C, Hu C H, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12): 2839-2843.
[18] [18] Li J W, Ma T, Mohar D, et al. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization[C]. SPIE, 2014, 8926: 892635.
[19] [19] Wang P, Ma T, Slipchenko M N, et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2 kHz barium nitrite Raman laser[J]. Scientific Reports, 2014, 4: 6889.
[20] [20] Piao Z L, Ma T, Li J W, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 2015, 107(8): 083701.
[21] [21] Wei W, Li X, Zhou Q F, et al. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging[J]. Journal of Biomedical Optics, 2011, 16(10): 106001.
[22] [22] Li X, Wei W, Zhou Q F, et al. Intravascular photoacoustic imaging at 35 and 80 MHz[J]. Journal of Biomedical Optics, 2012, 17(10): 106005.
[23] [23] Moreno P R, Lodder R A, Purushothaman K R, et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy[J]. Circulation, 2002, 105(8): 923-927.
[24] [24] Wang J, Geng Y J, Guo B J, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques[J]. Journal of the American College of Cardiology, 2002, 39(8): 1305-1313.
[25] [25] Jansen K, van der Steen A F, van Beusekom H M, et al. Intravascular photoacoustic imaging of human coronary atherosclerosis[J]. Optics Letters, 2011, 36(5): 597-599.
[26] [26] Wang B, Su J L, Amirian J, et al. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging[J]. Optics Express, 2010, 18(5): 4889-4897.
[27] [27] Zhang J, Xing D. Intravascular photoacoustic detection of vulnerable plaque based on constituent selected imaging[J]. Journal of Physics: Conference Series, 2011, 277(1): 012049.
[28] [28] Yoo H K, Kim J W, Shishkov M, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo[J]. Nature Medicine, 2011, 17(12): 1680-1684.
[29] [29] Liang S S, Saidi A, Jing J, et al. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner[J]. Journal of Biomedical Optics, 2012, 17(7): 070501.
[30] [30] Liang S S, Ma T, Jing J, et al. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging[J]. Optics Letters, 2014, 39(23): 6652-6655.
[31] [31] Nadkarni S K. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture[J]. Journal of Biomedical Optics, 2013, 18(12): 121507.
[32] [32] Waxman S, Ishibashi F, Muller J E. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events[J]. Circulation, 2006, 114(22): 2390-2411.
[33] [33] Alfonso F, Dutary J, Paulo M, et al. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis[J]. Heart, 2012, 98(16): 1213-1220.
[34] [34] Yin J C, Li X, Jing J, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging[J]. Journal of Biomedical Optics, 2011, 16(6): 060505.
[35] [35] Li J W, Ma T, Jing J, et al. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display[J]. Journal of Biomedical Optics, 2013, 18(10): 100502.
[36] [36] Li J W, Yin J C, Li X, et al. Miniature integrated optical coherence tomography (OCT)-ultrasound (US) probe for intravascular imaging[C]. SPIE, 2012, 8207: 82073X.
[37] [37] Li J W, Chen Z P. Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques[J]. Journal of Biomedical Photonics & Engineering, 2016, 1(4): 209-224.
[38] [38] Li J W, Li X, Mohar D, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis[J]. JACC: Cardiovascular Imaging, 2014, 7(1): 101-103.
[39] [39] Li X, Li J W, Jing J, et al. Integrated IVUS-OCT imaging for atherosclerotic plaque characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 7100108.
[40] [40] Li J W, Ma T, Mohar D, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo[J]. Scientific Reports, 2015, 5: 18406.
[41] [41] Ohtsuki K, Hayase M, Akashi K, et al. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study[J]. Circulation, 2001, 104(2): 203-208.
[42] [42] Kolodgie F D, Petrov A, Virmani R, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque[J]. Circulation, 2003, 108(25): 3134-3139.
[43] [43] Sanz J, Fayad Z A. Imaging of atherosclerotic cardiovascular disease[J]. Nature, 2008, 451(7181): 953-957.
[44] [44] Qureshi A, Gurbuz Y, Niazi J H. Biosensors for cardiac biomarkers detection: a review[J]. Sensors and Actuators B: Chemical, 2012, 171: 62-76.
[45] [45] Schmitt J M, Adler D C, Xu C Y. Future development[M]. //Jang I K. Cardiovascular OCT imaging. London: Springer, 2015: 203-216.
[46] [46] Ughi G J, Wang H, Gerbaud E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J/OL]. JACC: Cardiovascular Imaging, 2016[2016-04-21]. http://www.sciencedirect.com/science/article/pii/S1936878X16000383.
[47] [47] Diamond K R, Patterson M S, Farrell T J. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber[J]. Applied Optics, 2003, 42(13): 2436-2442.
[48] [48] Kim A, Khurana M, Moriyama Y, et al. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements[J]. Journal of Biomedical Optics, 2010, 15(6): 067006.
[49] [49] Fard A M, Vacas-Jacques P, Hamidi E, et al. Optical coherence tomography-near infrared spectroscopy system and catheter for intravascular imaging[J]. Optics Express, 2013, 21(25): 30849-30858.
[50] [50] Caplan J D, Waxman S, Nesto R W, et al. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques[J]. Journal of the American College of Cardiology, 2006, 47(8s1): C92-C96.
[51] [51] Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century[J]. Journal of Raman Spectroscopy, 2006, 37(1-3): 20-28.
[52] [52] Latka I, Dochow S, Krafft C, et al. Fiber optic probes for linear and nonlinear Raman applications—current trends and future development[J]. Laser & Photonics Reviews, 2013, 7(5): 698-731.
[53] [53] Matthus C, Dochow S, Bergner G, et al. In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-Stokes Raman scattering microscopic imaging on a rabbit model[J]. Analytical Chemistry, 2012, 84(18): 7845-7851.
[54] [54] Wang H W, Langohr I M, Sturek M, et al. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(9): 1342-1348.
[55] [55] Wang H W, Le T T, Cheng J X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope[J]. Optics Communications, 2008, 281(7): 1813-1822.
[56] [56] Balu M, Liu G J, Chen Z P, et al. Fiber delivered probe for efficient CARS imaging of tissues[J]. Optics Express, 2010, 18(3): 2380-2388.
[57] [57] Tam A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 1986, 58(2): 381-431.
[58] [58] Allen T J, Beard P C. Photoacoustic characterisation of vascular tissue at NIR wavelengths[C]. SPIE, 2009, 7177: 71770A.
[59] [59] Jansen K, Wu M, van der Steen A F W, et al. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands[J]. Photoacoustics, 2014, 2(1): 12-20.
[60] [60] Wang B, Karpiouk A, Yeager D, et al. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis[J]. Ultrasound in Medicine & Biology, 2012, 38(12): 2098-2103.
[61] [61] Bai X S, Gong X J, Hau W, et al. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter[J]. PLoS ONE, 2014, 9(3): e92463.
[62] [62] Li Y, Gong X J, Liu C B, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter[J]. Journal of Biomedical Optics, 2015, 20(6): 065006.
[63] [63] Jansen K, van Soest G, van der Steen A F W. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification[J]. Ultrasound in Medicine & Biology, 2014, 40(6): 1037-1048.
[64] [64] Zhang J, Yang S H, Ji X R, et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 2014, 64(4): 385-390.
[65] [65] Sethuraman S, Amirian J H, Litovsky S H, et al. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques[J]. Optics Express, 2008, 16(5): 3362-3367.
[66] [66] Wang P, Wang P, Wang H W, et al. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration[J]. Journal of Biomedical Optics, 2012, 17(9): 096010.
[67] [67] de Korte C L, Sierevogel M J, Mastik F, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study[J]. Circulation, 2002, 105(14): 1627-1630.
[68] [68] de Korte C L, van der Steen A F W. Intravascular ultrasound elastography: an overview[J]. Ultrasonics, 2002, 40(1-8): 859-865.
[69] [69] de Korte Chris L, van der Steen A F W, Céspedes E I, et al. Characterization of plaque components and vulnerability with intravascular ultrasound elastography[J]. Physics in Medicine and Biology, 2000, 45(6): 1465.
[70] [70] de Korte C L, Mastik F, Schaar J A, et al. Intravascular elastography: from idea to clinical tool[M]. //Saijo Y, van der Steen A F W. Vascular ultrasound. Cham: Springer International Publishing AG, 2003: 91-105.
[71] [71] Nadkarni S K, Bouma B E, Helg T, et al. Characterization of atherosclerotic plaques by laser speckle imaging[J]. Circulation, 2005, 112(6): 885-892.
[72] [72] Hajjarian Z, Xi J Q, Jaffer F A, et al. Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall[J]. Journal of Biomedical Optics, 2011, 16(2): 026005.
[73] [73] Qi W J, Li R, Ma T, et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 2013, 103(10): 103704.
[74] [74] Rogowska J, Patel N A, Fujimoto J G, et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J]. Heart, 2004, 90(5): 556-562.
[75] [75] Qi W J, Chen R M, Chou L, et al. Phase-resolved acoustic radiation force optical coherence elastography[J]. Journal of Biomedical Optics, 2012, 17(11): 110505.
[76] [76] Qi W J, Li Rui, Ma T, et al. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 2014, 104(12): 123702.
[77] [77] Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 1998, 3(6): 199-211.
[78] [78] Ford M R, Dupps W J Jr, Rollins A M, et al. Method for optical coherence elastography of the cornea[J]. Journal of Biomedical Optics, 2011, 16(1): 016005.
[79] [79] Kennedy B F, Liang X, Adie S G, et al. In vivo three-dimensional optical coherence elastography[J]. Optics Express, 2011, 19(7): 6623-6634.
[80] [80] Kennedy B F, McLaughlin R A, Kennedy K M, et al. Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue[J]. Cancer Research, 2015, 75(16): 3236-3245.
[81] [81] van Soest G, Mastik F, de Jong N, et al. Robust intravascular optical coherence elastography by line correlations[J]. Physics in Medicine and Biology, 2007, 52(9): 2445-2458.
[82] [82] Zhu J, Qu Y Q, Ma T, et al. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method[J]. Optics Letters, 2015, 40(9): 2099-2102.
[83] [83] Han Z L, Li J S, Singh M, et al. Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography[J]. Applied Physics Letters, 2015, 106(23): 233702.
[84] [84] Dong L, Wijesinghe P, Dantuono J T, et al. Quantitative compression optical coherence elastography as an inverse elasticity problem[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 277-287.
[85] [85] Mc Cullough P A. Contrast-induced acute kidney injury[J]. Journal of the American College of Cardiology, 2008, 51(15): 1419-1428.
[86] [86] Li J W, Minami H, Steward E, et al. Optimal flushing agents for integrated optical and acoustic imaging systems[J]. Journal of Biomedical Optics, 2015, 20(5): 056005.
[87] [87] Hoang K C, Edris A, Su J P, et al. Use of an oxygen-carrying blood substitute to improve intravascular optical coherence tomography imaging[J]. Journal of Biomedical Optics, 2009, 14(3): 034028.
[88] [88] Kataiwa H, Tanaka A, Kitabata H, et al. Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography[J]. International Journal of Cardiology, 2011, 146(2): 186-190.
[89] [89] Ozaki Y, Kitabata H, Tsujioka H, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography[J]. Circulation Journal, 2012, 76(4): 922-927.
[90] [90] Wang B, Karpiouk A, Yeager D, et al. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood[J]. Optics Letters, 2012, 37(7): 1244-1246.
[91] [91] Calvert P A, Obaid D R, O′Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study[J]. JACC: Cardiovascular Imaging, 2011, 4(8): 894-901.
[92] [92] Stone G W, Maehara A, Lansky A J, et al. A prospective natural-history study of coronary atherosclerosis[J]. The New England Journal of Medicine, 2011, 364: 226-235.
[93] [93] Brener S J, Mintz G S, Cristea E, et al. Characteristics and clinical significance of angiographically mild lesions in acute coronary syndromes[J]. JACC: Cardiovascular Imaging, 2012, 5(3s): 86-94.
[94] [94] McPherson J A, Maehara A, Weisz G, et al. Residual plaque burden in patients with acute coronary syndromes after successful percutaneous coronary intervention[J]. JACC: Cardiovascular Imaging, 2012, 5(3s): 76-85.
[95] [95] Stone G W, Maehara A, Mintz G S. The reality of vulnerable plaque detection[J]. JACC: Cardiovascular Imaging, 2011, 4(8): 902-904.
[96] [96] Braunwald E. Epilogue: what do clinicians expect from imagers [J]. Journal of the American College of Cardiology, 2006, 47(8s): C101-C103.
[97] [97] Narula J, Dilsizian V. From better understood pathogenesis to superior molecular imaging, and back[J]. JACC: Cardiovascular Imaging, 2008, 1(3): 406-409.
[98] [98] Puri R, Worthley M I, Nicholls S J. Intravascular imaging of vulnerable coronary plaque: current and future concepts[J]. Nature Reviews Cardiology, 2011, 8(3): 131-139.
[99] [99] Kusters D H M, Tegtmeier J, Schurgers L J, et al. Molecular imaging to identify the vulnerable plaque—from basic research to clinical practice[J]. Molecular Imaging and Biology, 2012, 14(5): 523-533.
[102] [102] Mathews M S, Su J P, Heidari E, et al. Neuroendovascular optical coherence tomography imaging and histological analysis[J]. Neurosurgery, 2011, 69(2): 430-439.
Get Citation
Copy Citation Text
Li Jiawen, Chen Zhongping. Multimodality Intravascular Imaging Technologies Based on Optical System[J]. Chinese Journal of Lasers, 2016, 43(12): 1200001
Category: reviews
Received: May. 30, 2016
Accepted: --
Published Online: Nov. 15, 2017
The Author Email: Jiawen Li (Jiawen.li01@adelaide.edu.au)