Acta Optica Sinica, Volume. 43, Issue 17, 1714005(2023)
Review of High Average Power and High Beam Quality LD-Pumped Ytterbium-Doped Fiber Laser Oscillators and Amplifiers
[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[3] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[4] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).
[5] Schreiber T, Wirth C, Schmidt O et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 354-360(2009).
[6] Lei C M, Gu Y R, Chen Z L et al. Incoherent beam combining of fiber lasers by an all-fiber 7×1 signal combiner at a power level of 14 kW[J]. Optics Express, 26, 10421-10427(2018).
[7] Jäger M, Plötner M, Eschrich T et al. High-brightness incoherent combination of fiber lasers in 7×1 fiber couplers at average powers >5 kW[J]. Journal of Lightwave Technology, 33, 4297-4302(2015).
[8] Fu M, Li Z X, Wang Z F et al. Research on a 4×1 fiber signal combiner with high beam quality at a power level of 12 kW[J]. Optics Express, 29, 26658-26668(2021).
[9] Chen Z L, Fu M, Ning Y et al. A new type of optical fiber combiner realizes 20 kW high quality laser output[J]. Chinese Journal of Lasers, 49, 2016002(2022).
[10] Ma P F, Zhou P, Ma Y X et al. Development of the polarization beam combining technique of lasers[J]. Laser & Optoelectronics Progress, 49, 070005(2012).
[11] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).
[12] Ma Y X, Si L, Zhou P et al. The key technologies in coherent beam combination of high power fiber laser[J]. Journal of National University of Defense Technology, 34, 38-42(2012).
[13] Zhou P, Liu Z J, Wang X L et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 248-256(2009).
[14] Augst S J, Ranka J K, Fan T Y et al. Beam combining of ytterbium fiber amplifiers[J]. Journal of the Optical Society of America B, 24, 1707-1715(2007).
[15] Zhou P. Research on fiber laser coherent synthesis technology[D](2009).
[16] Wirth C, Schmidt O, Tsybin I et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 36, 3118-3120(2011).
[17] Ma Y, Yan H, Tian F et al. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 27, 040101(2015).
[18] Ma Y, Yan H, Peng W J et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 43, 0901009(2016).
[19] Zheng Y, Yang Y F, Zhao X et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).
[20] Chen F, Ma J, Wei C et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Optics Express, 25, 32783-32791(2017).
[21] Ma Y, Yan H, Sun Y H et al. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration[J]. Infrared and Laser Engineering, 47, 0103002(2018).
[22] Cheng X, Wang J L, Liu C H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 47, 0103011(2018).
[23] Jauregui C, Otto H J, Limpert J et al. Mode instabilities in high-power bidirectional fiber amplifiers and lasers[C], ATh2A.24(2015).
[24] Scarnera V, Ghiringhelli F, Malinowski A et al. Modal instabilities in high power fiber laser oscillators[J]. Optics Express, 27, 4386-4403(2019).
[25] Hejaz K, Shayganmanesh M, Azizi S et al. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers[J]. Laser Physics Letters, 15, 055102(2018).
[26] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[27] Xu Y, Sheng Q A, Wang P et al. 2.4 kW 1045 nm narrow-spectral-width monolithic single-mode CW fiber laser by using an FBG-based MOPA configuration[J]. Applied Optics, 60, 3740-3746(2021).
[28] Lai W C, Ma P F, Xiao H et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).
[29] Chu Q H, Guo C, Yan D L et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 32, 121004(2020).
[30] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).
[31] Yu C X, Shatrovoy O, Fan T Y et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 41, 5202-5205(2016).
[32] Lin H, Tao R, Li C et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019).
[33] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[34] Liu C H, Ehlers B, Doerfel F et al. 810 W continuous-wave and single-transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre[J]. Electronics Letters, 40, 1471-1472(2004).
[35] Jeong Y, Sahu J K, Baek S et al. Ytterbium-doped double-clad large-core fiber lasers with kW-level continuous-wave output power[C](2004).
[36] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).
[37] Filippov V, Chamorovskii Y, Kerttula J et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 17, 1203-1214(2009).
[38] Xiao Y, Brunet F, Kanskar M et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 20, 3296-3301(2012).
[39] Yu H B, Kliner D A V, Liao K H et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes[J]. Proceedings of SPIE, 8237, 82370G(2012).
[40] Stefan R, Frank B, Frank-Peter G et al. High-power disk and fiber lasers: a performance comparison[J]. Proceedings of SPIE, 8235, 82350V(2012).
[41] Yu H L, Wang X L, Tao R M et al. 1.5 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator[J]. Applied Optics, 53, 8055-8059(2014).
[42] Khitrov V, Minelly J D, Tumminelli R et al. 3 kW single-mode direct diode-pumped fiber laser[J]. Proceedings of SPIE, 8961, 89610V(2014).
[43] Shi W, Fang Q, Xu Y et al. 1.63 kW monolithic continuous-wave single-mode fiber laser oscillator[J]. Journal of Optoelectronics·Laser, 26, 662-666(2015).
[44] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 972805(2016).
[45] Yang B L, Zhang H W, Shi C et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 24, 27828-27835(2016).
[46] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 100830Y(2017).
[47] Yang B L, Zhang H W, Shi C et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 20, 025802(2018).
[48] Yang B L, Shi C, Zhang H W et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 15, 075106(2018).
[49] Ikoma S, Uchiyama K, Takubo Y et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 105120C(2018).
[50] Ye Y, Xi X M, Shi C et al. Experimental study of 5-kW high-stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics Journal, 11, 1503508(2019).
[51] Möller F, Krämer R G, Matzdorf C et al. Multi-kW performance analysis of Yb-doped monolithic single-mode amplifier and oscillator setup[J]. Proceedings of SPIE, 10897, 108970D(2019).
[52] Ackermann M, Rehmann G, Lange R et al. Extraction of more than 10 kW from a single ytterbium-doped MM-fiber[J]. Proceedings of SPIE, 10897, 1089717(2019).
[53] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126021(2020).
[54] Li H, Ye X Y, Wang M et al. Realization of 8 kW fiber oscillator by femtosecond laser writing fiber Bragg grating[J]. Chinese Journal of Lasers, 49, 2316001(2022).
[55] Filippov V, Kerttula J, Chamorovskii Y et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 18, 12499-12512(2010).
[56] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).
[57] Thomas J, Voigtlander C, Nolte S et al. Fiber Bragg gratings in active large mode area fiber written with femtosecond pulses[C](2009).
[58] Mohammed W, Gu X J. Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications[J]. Applied Optics, 49, 5297-5301(2010).
[59] Iho A, Tervonen A, Yla-Jarkko K et al. Characterization of modal coupling of Bragg gratings in large-mode-area fibers[J]. Journal of Lightwave Technology, 29, 2031-2038(2011).
[61] Wang X L, Tao R M, Zhang H W et al. 1 kilowatt single-end pumped all-fiber laser oscillator with good beam quality and high stability[J]. Chinese Journal of Lasers, 41, 1105001(2014).
[62] Peng K, Zhan H A, Ni L et al. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality[J]. Applied Optics, 55, 10133-10137(2016).
[63] Xu Y, Fang Q, Xie Z X et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 45, 0401001(2018).
[64] Zhang F, Zheng W Y, Shi P Y et al. 2-kW single-mode fiber laser employing bidirectional-pump scheme[J]. Proceedings of SPIE, 10619, 106190G(2018).
[65] Liem A, Freier E, Matzdorf C et al. Experimental analysis of the influence of the spectral width of out-coupling fiber Bragg gratings to the amount of gtimulated Raman gcattering in a cw kW fiber oscillator[C], JTh2A.32(2013).
[66] Schreiber T, Liem A, Freier E et al. Analysis of stimulated Raman scattering in cw kW fiber oscillators[J]. Proceedings of SPIE, 8961, 89611T(2014).
[67] Möller F, Krämer R G, Matzdorf C et al. Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW[C], AM2A.3(2018).
[68] Yang B L, Zhang H W, Wang X L et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 18, 105803(2016).
[69] Zhang H W, Wang X L, Yang B L et al. All-fiber laser oscillator with output power exceeding 3 kW[J]. Chinese Journal of Lasers, 44, 0415001(2017).
[70] Yang B L, Zhang H W, Ye Q et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 16, 031407(2018).
[71] Yang B L, Wang X L, Ye Y et al. The output power of all-fiber laser oscillator exceeds 6 kW[J]. Chinese Journal of Lasers, 47, 0116001(2020).
[72] Xi X M, Wang P, Yang B L et al. The output power of all-fiber laser oscillator exceeds 7 kW[J]. Chinese Journal of Lasers, 48, 0116001(2021).
[73] Li H Y, Tian X, Li H et al. Fiber oscillator of 5 kW using fiber Bragg gratings inscribed by a visible femtosecond laser[J]. Chinese Optics Letters, 21, 021404(2023).
[74] Wang Y. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers[J]. Optical Engineering, 44, 114202(2005).
[75] Wang Y, Xu C Q, Po H. Analysis of Raman and thermal effects in kilowatt fiber lasers[J]. Optics Communications, 242, 487-502(2004).
[76] Brochu G, Villeneuve A, Faucher M et al. SRS modeling in high power CW fiber lasers for component optimization[J]. Proceedings of SPIE, 10085, 100850N(2017).
[77] Liu W, Ma P F, Lü H B et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).
[78] Wang X L, Lü P, Zhang H W et al. Fiber laser simulation software See Fiber Laser and fiber laser tool collection SFTool[J]. Chinese Journal of Lasers, 44, 0506002(2017).
[79] Bock V, Liem A, Schreiber T et al. Explanation of stimulated Raman scattering in high power fiber systems[J]. Proceedings of SPIE, 10512, 105121F(2018).
[80] Ye Y, Yang B L, Wang X L et al. Experimental study of SRS threshold dependence on the bandwidths of fiber Bragg gratings in co-pumped and counter-pumped fiber laser oscillator[J]. Journal of Optics, 21, 025801(2019).
[81] Stutzki F, Jansen F, Otto H J et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 1, 233-242(2014).
[82] Jauregui C, Limpert J, Tünnermann A. Ultra-large mode area fibers for high power lasers[C], M2J.1(2018).
[83] Yang B L, Zhang H W, Shi C et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 27, 7585-7592(2019).
[84] Zeng L F, Xi X M, Ye Y et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 45, 5792-5795(2020).
[85] Zhang Z L, Zhang F F, Lin X F et al. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output[J]. Acta Physica Sinica, 69, 234205(2020).
[86] Beier F, Möller F, Sattler B et al. Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers[J]. Optics Letters, 43, 1291-1294(2018).
[87] Zhang Z L, Lin X F, Zhang X et al. Low-numerical aperture confined-doped long-tapered Yb-doped silica fiber for a single-mode high-power fiber amplifier[J]. Optics Express, 30, 32333-32346(2022).
[88] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).
[89] Li H, Yang B L, Wang M et al. Femtosecond laser fabrication of large-core fiber Bragg gratings for high-power fiber oscillators[J]. APL Photonics, 8, 046101(2023).
[90] Fomin V, Mashkin A, Abramov M et al. 3 kW Yb fibre lasers with a single-mode output[C](2006).
[91] Jeong Y C, Boyland A J, Sahu J K et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 13, 416-422(2009).
[92] Fang Q A, Shi W, Qin Y G et al. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm[J]. Laser Physics Letters, 11, 105102(2014).
[93] Rosales-GarciaAndrea, TobiokaHideaki, AbedinKazi et al. 2.1 kW single mode continuous wave monolithic fiber laser[J]. Proceedings of SPIE, 9344, 93441G(2015).
[94] Yu H L, Zhang H W, Lü H B et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015).
[95] Xiao Q, Yan P, Li D et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 24, 6758-6768(2016).
[96] Wang J M, Yan D P, Xiong S S et al. High power all-fiber amplifier with different seed power injection[J]. Optics Express, 24, 14463-14469(2016).
[97] Zhan H A, Liu Q Y, Wang Y Y et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes[J]. Optics Express, 24, 27087-27095(2016).
[98] Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 25, 14892-14899(2017).
[99] Fang Q, Li J H, Shi W et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1506107(2017).
[100] Shi C, Su R T, Zhang H W et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 9, 1502910(2017).
[101] Yan P, Huang Y S, Sun J Y et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 14, 080001(2017).
[102] Wang J M, Yan D P, Xiong S S et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber[J]. Optics Communications, 396, 123-126(2017).
[103] Lin A X, Zhan H, Wang Y Y et al. 8.74 kW laser output realized by domestic pump gain integrated composite function laser fiber[J]. High Power Laser and Particle Beams, 30, 010101(2018).
[104] Zhan H A, Peng K, Liu S A et al. Pump-gain integrated functional laser fiber towards 10 kW-level high-power applications[J]. Laser Physics Letters, 15, 095107(2018).
[105] Lin H H, Tang X, Li C Y et al. The national single-fiber laser system has obtained 10.6 kW laser output[J]. Chinese Journal of Lasers, 45, 0315001(2018).
[106] Xiao Q R, Li D, Huang Y S et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser[J]. Laser Physics, 28, 125107(2018).
[107] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).
[108] Wang Y Y, Gao C, Tang X et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 36, 3396-3402(2018).
[109] Li T L, Zha C W, Sun Y H et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 28, 105101(2018).
[110] Luo Y, Zhao P F, You Y F et al. 5.1 kW optically and electronically controlled integrated single mode fiber laser[J]. Chinese Journal of Lasers, 47, 0816001(2020).
[111] Huang Z M, Shu Q, Chu Q H et al. 5 kW narrow linewidth all-fiber single-mode fiber amplifier[J]. Chinese Journal of Lasers, 48, 0616001(2021).
[112] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).
[113] Zheng J K, Zhao W, Zhao B Y et al. Investigation of stimulated Raman scattering in high-power co-pumping fiber amplifiers[J]. Laser Physics, 28, 105105(2018).
[114] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).
[115] Tao R M, Ma P F, Wang X L et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[J]. Proceedings of SPIE, 9255, 92550B(2015).
[116] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[117] Ma P F, Xiao H, Liu W et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration[J]. High Power Laser Science and Engineering, 9, e45(2021).
[118] Zhang F F, Wang Y B, Lin X F et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 27, 20824-20836(2019).
[119] An Y, Yang H, Xiao H et al. 4-kW single-mode laser output using homemade double-tapered fiber[J]. Chinese Journal of Lasers, 48, 0115002(2021).
[120] Ye Y, Lin X F, Yang B L et al. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier[J]. Optics Letters, 47, 2162-2165(2022).
[121] Lin X F, Ye Y, Zhang Z L et al. 2.7 kW co-pumped fiber amplifier based on constant-cladding tapered-core fiber[J]. Optical Fiber Technology, 68, 102773(2022).
[122] Zheng Y H, Han Z G, Li Y L et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 30, 12670-12683(2022).
[123] Ma X Q, Zhu C, Hu I N et al. Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores[J]. Optics Express, 22, 9206-9219(2014).
[124] Kanskar M, Zhang J, Kaponen J et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 10512, 105120F(2018).
[125] Liu Y H, Zhang F F, Zhao N et al. Single transverse mode laser in a center-Sunken and cladding-trenched Yb-doped fiber[J]. Optics Express, 26, 3421-3426(2018).
[126] Yang B L, Yang H, Ye Y et al. Realization of 6 kW wide spectrum laser output by domestic spindle-shaped graded Yb-doped fiber[J]. High Power Laser and Particle Beams, 34, 081001(2022).
[127] Tian X, Rao B Y, Wang M et al. Narrow linewidth laser with simple MOPA structure breaks through 5 kW near single mode output[J]. High Power Laser and Particle Beams, 34, 121002(2022).
[128] Wang P, Xi X M, Zhang H W et al. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 34, 121001(2022).
[129] Nicholson J W, Pincha J, Kansal I et al. 5 kW single-mode output power from Yb-doped fibers with increased higher-order mode loss[J]. Proceedings of SPIE, 12400, 1240002(2023).
[130] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[131] Xi X M, Yang H, Zeng L F et al. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 33, 021001(2021).
[132] Yang B L, Yang H, Wang P et al. LD pumped fiber laser based on self-developed fiber realizes 10 kW output[J]. Chinese Journal of Lasers, 49, 2016001(2022).
[133] Xi X M, Yang B L, Zhang H W et al. The output power of LD directly pumped all-fiber laser exceeded 20 kW[J]. High Power Laser and Particle Beams, 35, 021001(2023).
[134] Jain D, Jung Y, Nunez-Velazquez M et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 22, 31078-31091(2014).
[135] Jain D, Alam S, Jung Y et al. Highly efficient Yb-free Er-La-Al doped ultra-low NA large mode area single-trench fiber laser[J]. Optics Express, 23, 28282-28287(2015).
[136] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).
[137] Tian X, Rao B Y, Wang M et al. 4 kW narrow-linewidth fiber laser based on a simple one-stage MOPA structure[J]. Laser Physics Letters, 19, 115101(2022).
[138] Tian X, Rao B Y, Xi X M et al. Selection principle of seed power in high-power narrow linewidth fiber amplifier seeded by a FBGs-based fiber oscillator[J]. Optics Express, 31, 12016-12025(2023).
[139] Shu Q. Research on anti-reflection, high efficiency, high quality and high power fiber laser technology[D](2018).
[140] Shu Q, Li C Y, Lin H H et al. 2 kW class antireflection fiber laser with oscillator-amplifier integration[J]. Chinese Journal of Lasers, 45, 0801004(2018).
[141] Hejaz K, Shayganmanesh M, Roohforouz A et al. Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification[J]. Applied Optics, 57, 5992-5997(2018).
[142] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138(2019).
[143] Yan D L, Guo C, Zhao P F et al. A simple O-shaped cylinder fiber laser without inter-cladding-power-strippers[J]. Proceedings of SPIE, 11890, 118900H(2021).
[144] Zeng L F, Wang X L, Yang B L et al. A 3.5-kW near-single-mode oscillating-amplifying integrated fiber laser[J]. High Power Laser Science and Engineering, 9, e41(2021).
[145] Zeng L F, Xi X M, Zhang H W et al. Demonstration of the reliability of a 5-kW-level oscillating-amplifying integrated fiber laser[J]. Optics Letters, 46, 5778-5781(2021).
[146] Yan D L, Liao R Y, Guo C et al. A 3.7-kW oscillating-amplifying integrated fiber laser featuring a compact oval-shaped cylinder package[J]. Micromachines, 14, 264(2023).
[147] Zeng L F, Shi C, Zhong H R et al. Theoretical and experimental research on output characteristics of oscillating-amplifying integrated fiber laser[J]. Proceedings of SPIE, 12614, 126140T(2023).
[148] Zeng L F, Yang H, Xi X M et al. Optimization and demonstration of 6 kW oscillating-amplifying integrated fiber laser employing spindle-shaped fiber to suppress SRS and TMI[J]. Optics & Laser Technology, 159, 108903(2023).
[149] Huang Y S, Yan P, Wang Z H et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 27, 3136-3145(2019).
[150] Shi J H, Du T Y, Ma G M et al. All-domestic industrial fiber laser realizes stable output of 22.07 kW single fiber power[J]. Chinese Journal of Lasers, 49, 2416003(2022).
Get Citation
Copy Citation Text
Baolai Yang, Peng Wang, Xiaoming Xi, Pengfei Ma, Xiaolin Wang, Zefeng Wang. Review of High Average Power and High Beam Quality LD-Pumped Ytterbium-Doped Fiber Laser Oscillators and Amplifiers[J]. Acta Optica Sinica, 2023, 43(17): 1714005
Category: Lasers and Laser Optics
Received: May. 15, 2023
Accepted: Jul. 17, 2023
Published Online: Sep. 14, 2023
The Author Email: Wang Zefeng (zefengwang_nudt@163.com)