Chinese Optics, Volume. 15, Issue 5, 1000(2022)
Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis
[1] FANG CH, GU B ZH, YUAN X Y, . 2.5 m wide-field and high-resolution telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 49, 059603(2019).
[2] LI Z X, JIN G, ZHANG L, . Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 7, 532-541(2014).
[3] CAO X T, SUN T Y, ZHAO Y L, . Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 7, 739-748(2014).
[4] SAKO T, SEKIGUCHI T, SASAKI M, et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand[J]. Experimental Astronomy, 22, 51-66(2008).
[5] OLIVIER S S, SEPPALA L, GILMORE K, et al. LSST camera optics[J]. Proceedings of SPIE, 6273, 62730Y(2006).
[6] OBUCHI Y, KOMIYAMA Y, KAMATA Y, et al. Hyper Suprime-Cam: implementation and performance of the cryogenic Dewar[J]. Proceedings of SPIE, 8446, 84466Q(2012).
[7] KOMIYAMA Y, OBUCHI Y, NAKAYA H, et al. Hyper Suprime-Cam: camera Dewar design[J]. Publications of the Astronomical Society of Japan, 70, S2(2018).
[8] RASMUSSEN A P, HALE L, KIM P, et al. Focal plane metrology for the LSST camera[J]. Proceedings of SPIE, 6273, 62732U(2006).
[9] TAKACS P Z, O'CONNOR P, RADEKA V, et al. LSST detector module and raft assembly metrology concepts[J]. Proceedings of SPIE, 6273, 62733Q(2006).
[10] ROBBINS M S, BASTABLE M, BATES A, et al. Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope[J]. Proceedings of SPIE, 9908, 990811(2016).
[11] TAYLOR K, MARÍN-FRANCH A, LAPORTE R, et al. JPCAM: a 1.2 GPIXEL camera for the J-PAS survey[J]. Journal of Astronomical Instrumentation, 3, 1350010(2014).
[12] PRATLONG J, WANG S Y, LEHNER M, et al. A 9 megapixel large-area back-thinned CMOS sensor with high sensitivity and high frame-rate for the TAOS II program[J]. Proceedings of SPIE, 9915, 991514(2016).
[13] WANG S Y, GEARY J C, AMATO S M, et al. High speed wide field CMOS camera for transneptunian automatic occultation survey[J]. Proceedings of SPIE, 9147, 914772(2014).
[14] [14] WEN J Y. Research on methods techniques of optomechanical integrated analysis[D]. Xi’an: Xidian University, 2008. (in Chinese)
[15] [15] WANG Z W, ZHAO ZH CH, YANG Y, et al. . Thermalstructuraloptical integrated analysis method based on the complete equations of rigid body motion[JOL]. Infrared Laser Engineering, (20211111). http:kns.cnki.kcmsdetail12.1261.TN.20211110.1706.004.html. (in Chinese)
[16] ZHAO X D, WANG J. Analysis of the mirror deformation of one-meter theodolite protective window[J]. Chinese Optics, 11, 654-661(2018).
[17] ZHANG L M, WANG F G, AN Q CH, . Application of Bipod to supporting Structure of minitype reflector[J]. Optics and Precision Engineering, 23, 438-443(2015).
[18] MING M, WANG J L, ZHANG J X, . Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 17, 104-108(2009).
Get Citation
Copy Citation Text
Sheng-guang NIU, Liang GUO, Zhen-yu LU, Kang HAN. Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis[J]. Chinese Optics, 2022, 15(5): 1000
Category: Original Article
Received: May. 9, 2022
Accepted: --
Published Online: Sep. 29, 2022
The Author Email: