Chinese Journal of Lasers, Volume. 51, Issue 19, 1901005(2024)
Power Scaling and Wavelength Extension Enabled by Random Fiber Laser (Invited)
[6] Han B, Cheng Q, Tao Y M et al. Spectral manipulations of random fiber lasers: principles, characteristics, and applications[J]. Laser & Photonics Reviews, 18, 2400122(2024).
[7] Guo T T, Pan H G, Zhang A L et al. Wavelength injection locked random fiber laser based on random phase shift fiber Bragg grating[J]. Journal of Optics, 52, 386-390(2023).
[9] Abaie B, Mobini E, Karbasi S et al. Random lasing in an Anderson localizing optical fiber[J]. Light: Science & Applications, 6, e17041(2017).
[10] Hu Y Z, Zhu D C, Huang C Q et al. Thulium-doped fiber random laser based on random grating[J]. Chinese Journal of Lasers, 50, 0201002(2023).
[12] Dong J Y, Zhang L, Zhou J Q et al. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber[J]. Optics Letters, 44, 1801-1804(2019).
[21] Ning J X, Wang C H, Fang N et al. Brillouin random fiber laser with orthogonal polarization clamping[J]. Chinese Journal of Lasers, 50, 1001002(2023).
[22] Upadhyaya B N, Kuruvilla A, Chakravarty U et al. Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser[J]. Applied Optics, 49, 2316-2325(2010).
[23] Turitsyn S K, Bednyakova A E, Fedoruk M P et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics[J]. Optics Express, 19, 8394-8405(2011).
[24] Nuño J, Alcon-Camas M, Ania-Castañón J D. RIN transfer in random distributed feedback fiber lasers[J]. Optics Express, 20, 27376-27381(2012).
[25] Babin S A, Dontsova E I, Kablukov S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 38, 3301-3303(2013).
[26] Xu J M, Lou Z K, Ye J et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 25, 5609-5617(2017).
[27] Zhang H W, Huang L, Zhou P et al. More than 400 W random fiber laser with excellent beam quality[J]. Optics Letters, 42, 3347-3350(2017).
[29] Song J X, Ren S, Liu W et al. Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power[J]. Optics Letters, 46, 5031-5034(2021).
[30] Zhang H W, Wu J M, Wan Y C et al. Kilowatt random Raman fiber laser with full-open cavity[J]. Optics Letters, 47, 493-496(2022).
[33] Li Y, Li T L, Peng W J et al. Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser[J]. IEEE Photonics Technology Letters, 29, 1844-1847(2017).
[34] Li T L, Li Y, Peng W J et al. 1.1 kW narrowband spectra random fiber laser amplifier[J]. Chinese Journal of Lasers, 44, 0201015(2017).
[37] Xiao Q R, Tian J D, Li D et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 48, 1501004(2021).
[38] Xu J M, Ye J, Zhou P et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality[J]. Science China Technological Sciences, 62, 80-86(2019).
[39] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on tandem-pumping scheme[C](2019).
[43] Han B, Dong S S, Liu Y et al. Cascaded random Raman fiber laser with low RIN and wide wavelength tunability[J]. Photonic Sensors, 12, 220414(2022).
[45] Li Z, She S F, Li G et al. Random laser emission at 1064 and 1550 nm in a Er/Yb Co-doped fiber-based dual-wavelength random fiber laser[J]. Optics Express, 32, 5737-5747(2024).
[47] Yang J H, Huang P, Mei J et al. Tunable random fiber laser with half-open-cavity configuration[J]. Optik, 194, 163098(2019).
[54] Inoue K. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region[J]. Journal of Lightwave Technology, 10, 1553-1561(1992).
[55] Wai P K A, Chen H H, Lee Y C. Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers[J]. Physical Review A, 41, 426-439(1990).
[57] Bufetov I A, Eugeni M D, Mikhail M B et al. CW highly efficient 1.24-μm Raman laser based on low-loss phosphosilicate fiber[J]. Proceedings of SPIE, 4083, 111-117(2000).
[59] Qi T C, Tian J D, Yang Y S et al. High-spectral-purity random Raman fiber laser oscillator with full-open cavity counter-pumped by random lasing[J]. Optics & Laser Technology, 161, 109145(2023).
[62] Abeeluck A K, Headley C. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation[J]. Optics Letters, 30, 61-63(2005).
[63] Abrardi L, Martin-Lopez S, Carrasco-Sanz A et al. Optimized all-fiber supercontinuum source at 1.3 μm generated in a stepwise dispersion-decreasing-fiber arrangement[J]. Journal of Lightwave Technology, 25, 2098-2102(2007).
[65] Arun S, Choudhury V, Balaswamy V et al. High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers[J]. Optics Express, 26, 7979-7984(2018).
[66] Chen L J, Song R, Lei C M et al. Random fiber laser directly generates visible to near-infrared supercontinuum[J]. Optics Express, 27, 29781-29788(2019).
[68] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).
[69] Arun S, Choudhury V, Balaswamy V et al. Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers[J]. Optics Letters, 45, 1172-1175(2020).
[72] Lau K Y, Suhailin F H, Abidin N H Z et al. Continuous-wave pumping supercontinuum generation in random distributed feedback laser cavity[J]. IEEE Photonics Journal, 11, 1503707(2019).
[73] Chen L, Song R, Lei C et al. Influences of position of ytterbium-doped fiber and ASE pump on spectral properties of random fiber laser[J]. Optics Express, 27, 9647-9654(2019).
[75] Zhao L, Li Y, Guo C et al. Generation of 215 W supercontinuum containing visible spectra from 480 nm[J]. Optics Communications, 425, 118-120(2018).
[76] Cheng X, Dong J Y, Zeng X et al. 130 W continuous-wave supercontinuum generation within a random Raman fiber laser[J]. Optical Fiber Technology, 68, 102825(2022).
[77] Qi T C, Li D, Wang Z H et al. Spectral pedestal during the kilowatt-level amplification of a random fiber laser operating near the lasing threshold[J]. Optics Express, 30, 296-307(2022).
[78] Gorbunov O A, Sugavanam S, Churkin D V. Intensity dynamics and statistical properties of random distributed feedback fiber laser[J]. Optics Letters, 40, 1783-1786(2015).
[79] Jiang L, Wu J M, Song R et al. Kilowatt-level supercontinuum generation in a single-stage random fiber laser with a half-open cavity[J]. High Power Laser Science and Engineering, 11, e80(2023).
[80] Qi T C, Yang Y S, Li D et al. Kilowatt-level supercontinuum generation in random Raman fiber laser oscillator with full-open cavity[J]. Journal of Lightwave Technology, 40, 7159-7166(2022).
[81] Wang L, Zhang H W et al. Simple method for high average power supercontinuum generation based on Raman mode locking in a quasi-CW fiber laser oscillator[J]. Optics Letters, 47, 5809-5812(2022).
[83] Jia X H, Rao Y J, Yuan C X et al. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping[J]. Optics Express, 21, 24611-24619(2013).
[84] Wiersma D S. The physics and applications of random lasers[J]. Nature Physics, 4, 359-367(2008).
[86] Hokr B H, Schmidt M S, Bixler J N et al. A narrow-band speckle-free light source via random Raman lasing[J]. Journal of Modern Optics, 63, 46-49(2016).
[87] Redding B, Cerjan A, Huang X et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 1304-1309(2015).
[88] He J J, Chan W K, Cheng X et al. Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback[J]. Advanced Optical Materials, 6, 1701187(2018).
[89] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle free imaging[C], 13-18(2018).
[92] Bobrow T L, Mahmood F, Inserni M et al. Speckle reduction in laser illuminated endoscopy using adversarial deep learning[J]. Proceedings of SPIE, 10889, 1088916(2019).
[93] Graetzel C, Suter M, Aschwanden M. Reducing laser speckle with electroactive polymer actuators[J]. Proceedings of SPIE, 9430, 943004(2015).
[95] Dingel B, Kawata S. Speckle-free image in a laser-diode microscope by using the optical feedback effect[J]. Optics Letters, 18, 549-551(1993).
[96] Yurlov V, Lapchuk A, Yun S et al. Speckle suppression in scanning laser display[J]. Applied Optics, 47, 179-187(2008).
Get Citation
Copy Citation Text
Qirong Xiao, Tiancheng Qi, Dan Li, Shanshan Du, Lele Wang, Guohao Fu, Yousi Yang, Guanzhong Li, Yijie Zhang, Ping Yan, Mali Gong, Qiang Liu. Power Scaling and Wavelength Extension Enabled by Random Fiber Laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901005
Category: laser devices and laser physics
Received: Jun. 13, 2024
Accepted: Sep. 4, 2024
Published Online: Oct. 11, 2024
The Author Email: Liu Qiang (qiangliu@mail.tsinghua.edu.cn)
CSTR:32183.14.CJL240960