Laser & Infrared, Volume. 54, Issue 9, 1339(2024)

Research progress on vehicle-mounted LiDAR parameters

ZHU Xuan1, HAN Peng2,3, WU Zi-bo2,3、*, and ZHU Qing-li4
Author Affiliations
  • 1School of Opto-Electronics Information Science and Engineering, Changchun College of Electronic Technology, Changchun 130061, China
  • 2State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 3School of Daheng, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Nanjing China Air Wing Aircraft Technology Co., Ltd., Nanjing 210000, China
  • show less
    References(30)

    [1] [1] Z H Li, E Wu, C K Pang, et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Optics Express, 2017, 25(9): 10189.

    [3] [3] Kim T, Park T. Calibration method between dual 3D lidar sensors for autonomous vehicles[C]//Proceedings the 56th Annual Conference of the Society-of-Instrument-and-Control-Engineers-of-Japan (SICE), Kanazawa Univ, Kanazawa, JAPAN, 2017: 1075-1081.

    [4] [4] Michaelis M, Berthold P, Meissner D, et al. Heterogeneous multi-sensor fusion for extended objects in automotive scenarios using Gaussian processes and a GMPHD-filter[C]. Procee-dings the 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 2017: 1-6.

    [5] [5] F C Delori, R H. Webb, D H Sliney. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices[J]. Journal of The Optical Society of America A-Optics Image Science and Vision, 2007, 24(5): 1250-1265.

    [6] [6] M Kutila, P Pyyknen, H Holzhter, et al. Automotive LiDAR performance verification in fog and rain[C]//Proceedings the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 2018: 1695-1701.

    [7] [7] P Duthon, M Colomb, F Bernardin. Light transmission in fog: the influence of wavelength on the extinction coefficient[J]. Applied Sciences, 2019, 9(14): 2843.

    [8] [8] J Wojtanowski, M Zygmunt, M Kaszczuk, et al. Comparison of 905 nm and 1550 nm semiconductor laser rangefinders' performance deterioration due to adverse environmental conditions[J]. Opto-Electron, 2014, 22(3): 183-190.

    [9] [9] Aboujja S, Chu D, Been D. Multi-junction long-wavelength laserdiode in long range LiDAR for highspeed autonomous vehicles[C]//Proceedings of the 2022 Conference on Laser Radar Technology and Applications XXVII, Electr Nntwork, 2022, 12110: 1211004-1-12.

    [10] [10] Aboujja S, Chu D. Semiconductor optical amplifier array for coherent FMCW LiDAR inautonomous vehicles[C]//Proceedings of the 2023 Conference on Laser Radar Technology and Applications XXVIII, Orlando, FL, 2023, 12537: 12530D-1-7.

    [11] [11] C H Wen, Y Q Li. Research on De-noising in optical inter-satellites communication[C]//International Conference on the Saftware Process, Beijing, 2006: 1-4.

    [13] [13] Chen D, Peethambaran J, Zhang Z. A supervoxel-based vegetation classification via decomposition and modelling of full-waveform airborne laser scanning data[J]. International Journal of Remote Sensing, 2018, 39(9): 2937-2968.

    [14] [14] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision, Springer, Cham, 2014: 818-833.

    [15] [15] Antonarakis A S, Richards K S, Brasington J. Object-based land cover classification using airborne LiDAR[J]. Remote Sensing of Environment, 2008, 112(6): 2988-2998.

    [17] [17] C Chen, L Pei, C Xu, et al. Trajectory optimization of lidar slam based on local pose graph[C]//Proceedings of the 10th China Satellite Navigation Conference (CSNC), Beijing, Peoples R China, 2019, 562: 360-370.

    [18] [18] Shi S, Guo C, Jiang L, et al. Point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.

    [19] [19] Li J, Sun Y, Luo S, et al. Point to voxel feature learning for 3D object detection from point clouds[J]. IEEE Access, 2021, 9: 98249-98260.

    [21] [21] Zou Z, Lang H, Lou X Y, et al. Plane-based global registration for pavement 3D reconstruction usinghybrid solid-state LiDAR point cloud[J]. Automation In Construction, 2023, 152: 1-18.

    [22] [22] Yoshioka K. A tutorial and review of automobile direct ToF LiDAR SoCs: evolution of next-generation LiDARs[J]. IEICE Transactions on Electionics, 2023, E105C(10): 534-543.

    [23] [23] Tuan T T, Hiroshi K, Koichi K, Toshiki Sugimoto, et al. A 2D-SPAD array and read-out AFE for next-generation solid-state LiDAR[C]//Proceedings of the IEEE Symposium on VLSI Circuits, Electr Network, 2020: 1-2.

    [24] [24] Oichi K, Junichi O, Masao M, et al. A 189x600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems[C]//Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), Electr Network, 2021, 64: 110-112.

    [25] [25] Zhang C, Lindner S, Antolovic I M, et al. A 30-frames/s, 252X 144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming[J]. IEEE Journal of Solid-State Circuits, 2019, 54(4): 1137-1151.

    [26] [26] A Rahim, J Goyvaerts, B Szelag, et al. Open-access silicon photonics platforms in europe[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 1-8.

    [27] [27] Kang E, Choi H, Hellman B, et al. All-MEMS lidar using hybrid optical architecture with digital micromirror devices and a 2D-MEMS Mirror[J]. Micromachines, 2022, 13(9): 1-15.

    [28] [28] Shan X, Chela C, Lang X, et al. Advances in narrow linewidth diode lasers[J]. Scientia Sinica Informationis, 2019, 49(6): 649-662.

    [29] [29] D Li, J Hu, R Ma, X Wang, et al. SPAD-based LiDAR with real-time accuracy calibration and laser power regulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(2): 431-435.

    [30] [30] Panajotov K, Arizaleta M, Camarena M, et al. Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 2004, 84(15): 2763-2765.

    [31] [31] Shin D K, Henson B M, Khakimov R I, et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0~1.1 m[J]. Optics Express, 2016, 24(24): 27403-27414.

    [32] [32] Duca L, Perego E, Berto F, et al. Design of a Littrow-type diode laser with independent control of cavity length and grating rotation[J]. Optics Letters, 2021, 46(12): 2840-2843.

    [33] [33] Tran MA, Huang D, Guo J, et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1-14.

    [35] [35] Koerner, J, Jambunathan V, Yue F, et al. Diode-pumped, electro-optically Q-switched, cryogenic Tm: YAG laser operating at 1.88 m[J]. High Power Laser Science and Endineering, 2021, 9: 1-6.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Xuan, HAN Peng, WU Zi-bo, ZHU Qing-li. Research progress on vehicle-mounted LiDAR parameters[J]. Laser & Infrared, 2024, 54(9): 1339

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2024

    Accepted: Apr. 30, 2025

    Published Online: Apr. 30, 2025

    The Author Email: WU Zi-bo (2392365159@qq.com)

    DOI:10.3969/j.issn.1001-5078.2024.09.001

    Topics