Chinese Optics Letters, Volume. 21, Issue 3, 031407(2023)

Transverse mode interaction-induced Raman laser switching dynamics in a silica rod microresonator

Xueying Jin1、*, Qinglin Fang1, Xin Xu1, Yu Yang2, Haoran Gao1, and Haojie Xia1
Author Affiliations
  • 1Anhui Provincial Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 2School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
  • show less
    References(34)

    [1] X. Shen, H. Choi, D. Chen, W. Zhao, A. M. Armani. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photon., 14, 95(2020).

    [2] Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, H. X. Tang. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Phys. Rev. Lett., 125, 183901(2020).

    [3] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893(2017).

    [4] P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, M. Lončar. On-chip diamond Raman laser. Optica, 2, 924(2015).

    [5] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [6] X. Jin, Y. Yang, X. Xu, K. Wang, L. Yu, H. Xia. Broadband manipulation of Stokes Raman frequency combs via mode division multiplexing in optical microcavities. J. Light. Technol., 40, 5141(2022).

    [7] Z. Dong, Y. Song, R. Xu, Y. Zheng, J. Tian, K. Li. Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering. Chin. Opt. Lett., 15, 071408(2017).

    [8] R. Suzuki, A. Kubota, A. Hori, S. Fujii, T. Tanabe. Broadband gain induced Raman comb formation in a silica microresonator. J. Opt. Soc. Am. B, 35, 933(2018).

    [9] T. J. Kippenberg, S. M. Spillane, D. K. Armani, K. J. Vahala. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett., 29, 1224(2004).

    [10] M. Ahmadi, W. Shi, S. LaRochelle. Widely tunable silicon Raman laser. Optica, 8, 804(2021).

    [11] G. Lin, Y. K. Chembo. Phase-locking transition in Raman combs generated with whispering gallery mode resonators. Opt. Lett., 41, 3718(2016).

    [12] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photonics, 9, 828(2017).

    [13] N. Deka, A. J. Maker, A. M. Armani. Titanium-enhanced Raman microcavity laser. Opt. Lett., 39, 1354(2014).

    [14] D. Xia, Y. Huang, B. Zhang, P. Zeng, J. Zhao, Z. Yang, S. Sun, L. Luo, G. Hu, D. Liu, Z. Wang, Y. Li, H. Guo, Z. Li. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev., 16, 2100443(2022).

    [15] Z. Li, Q. Du, C. Wang, J. Zou, T. Du, K. A. Richardson, Z. Cai, J. Hu, Z. Luo. Externally pumped photonic chip-based ultrafast Raman soliton source. Laser Photonics Rev., 15, 2000301(2021).

    [16] M. Yan, L. Zhang, Q. Hao, X. Shen, X. Qian, H. Chen, X. Ren, H. Zeng. Surface-enhanced dual-comb coherent Raman spectroscopy with nanoporous gold films. Laser Photonics Rev., 12, 1800096(2018).

    [17] S. Kasumie, F. Lei, J. M. Ward, X. Jiang, L. Yang, S. Nic Chormaic. Raman laser switching induced by cascaded light scattering. Laser Photonics Rev., 13, 1900138(2019).

    [18] P. Zhao, Y. Zhang, L. Wang, K. Cao, J. Su, S. Hu, H. Hu. Measurement of tropospheric CO2 and aerosol extinction profiles with Raman lidar. Chin. Opt. Lett., 6, 157(2008).

    [19] K. Yang, H. Li, H. Gong, X. Shen, Q. Hao, M. Yan, K. Huang, H. Zeng. Temperature measurement based on adaptive dual-comb absorption spectral detection. Chin. Opt. Lett., 18, 051401(2020).

    [20] H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, M. Paniccia. A cascaded silicon Raman laser. Nat. Photon., 2, 170(2008).

    [21] B.-S. Moon, T. K. Lee, W. C. Jeon, S. K. Kwak, Y.-J. Kim, D.-H. Kim. Continuous-wave upconversion lasing with a sub-10 W cm−2 threshold enabled by atomic disorder in the host matrix. Nat. Commun., 12, 4437(2021).

    [22] Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, C.-H. Dong. Tunable Raman laser in a hollow bottle-like microresonator. Opt. Express, 25, 16879(2017).

    [23] T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, K. J. Vahala. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-parametric oscillators. Opt. Express, 13, 3558(2005).

    [24] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus. Raman response function of silica-core fibers. J. Opt. Soc. Am. B, 6, 1159(1989).

    [25] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).

    [26] G. Lin, Y. Candela, O. Tillement, Z. Cai, V. Lefèvre-Seguin, J. Hare. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers. Opt. Lett., 37, 5193(2012).

    [27] O. Lux, S. Sarang, O. Kitzler, D. J. Spence, R. P. Mildren. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876(2016).

    [28] H. Jang, B. S. Kim, B. S. Chun, H. J. Kang, Y. S. Jang, Y. W. Kim, Y. J. Kim, S. W. Kim. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth. Sci. Rep., 9, 7652(2019).

    [29] G. Lin, Y. K. Chembo. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23, 1594(2015).

    [30] A. V. Andrianov, E. A. Anashkina. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Results Phys., 17, 103084(2020).

    [31] I. S. Grudinin, L. Maleki. Efficient Raman laser based on a CaF2 resonator. J. Opt. Soc. Am. B, 25, 594(2008).

    [32] P.-J. Zhang, Q.-X. Ji, Q.-T. Cao, H. Wang, W. Liu, Q. Gong, Y.-F. Xiao. Single-mode characteristic of a supermode microcavity Raman laser. Proc. Natl. Acad. Sci. U.S.A., 118, e2101605118(2021).

    [33] B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. U.S.A., 111, 14657(2014).

    [34] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. U.S.A., 111, E3836(2014).

    Tools

    Get Citation

    Copy Citation Text

    Xueying Jin, Qinglin Fang, Xin Xu, Yu Yang, Haoran Gao, Haojie Xia, "Transverse mode interaction-induced Raman laser switching dynamics in a silica rod microresonator," Chin. Opt. Lett. 21, 031407 (2023)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Aug. 2, 2022

    Accepted: Nov. 7, 2022

    Posted: Nov. 8, 2022

    Published Online: Nov. 30, 2022

    The Author Email: Xueying Jin (xyjin007@hfut.edu.cn)

    DOI:10.3788/COL202321.031407

    Topics