Chinese Journal of Lasers, Volume. 47, Issue 8, 802007(2020)

Size Prediction of Directed Energy Deposited Cladding Tracks Based on Support Vector Regression

Yao Wang, Huang Yanlu*, and Yang Yongqiang
Author Affiliations
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • show less
    Figures & Tables(11)
    Structure of BP network
    Surface morphology of cladding track
    Micro-morphology of cladding track cross section
    Iterating process of searching optimal hyperparameters. (a) Iterating process of predicting the width; (b) iterating process of predicting the height
    Comparison between actual and predicted values of cladding tracks size. (a) Actual values of width and predicted values of models; (b) actual values of height and predicted values of models
    Effects of process parameters on cladding tracks size. (a) Effects of laser power on cladding tracks size; (b) effects of powder feeding rate on cladding tracks size; (c) effects of scanning speed on cladding tracks size
    • Table 1. Quadratic regression general rotation design experiment schedule

      View table

      Table 1. Quadratic regression general rotation design experiment schedule

      ExperimentNo.P /Wvp /(g·s-1)vs /(mm·s-1)E /mm
      14250.177.59
      24250.177.511
      34250.1710.59
      44250.1710.511
      54250.277.59
      64250.277.511
      74250.2710.59
      84250.2710.511
      96750.177.59
      106750.177.511
      116750.1710.59
      126750.1710.511
      136750.277.59
      146750.277.511
      156750.2710.59
      166750.2710.511
      173000.22910
      188000.22910
      195500.12910
      205500.32910
      215500.22610
      225500.221210
      235500.2298
      245500.22912
      255500.22910
      265500.22910
      275500.22910
      285500.22910
      295500.22910
      305500.22910
      315500.22910
    • Table 2. Analysis of the effectiveness of the process parameters

      View table

      Table 2. Analysis of the effectiveness of the process parameters

      RemovingparameterMRE ofpredictingwidth /%MRE ofpredictingheight /%
      Laser power12.4514.36
      Powder feeding rate10.2111.75
      Scanning speed10.979.28
      Distance of nozzle9.136.83
      Without removing8.516.06
    • Table 3. Selected optimal hyperparameters in different kernel function SVR models

      View table

      Table 3. Selected optimal hyperparameters in different kernel function SVR models

      ModelPredicting width of cladding tracksPredicting height of cladding tracks
      CγεdCγεd
      Polynomial-SVR1260.005610.132170.007420.13
      RBF-SVR90.350.00122-90.250.0027-
      Sigmoid-SVR160.030.1-160.050.1-
    • Table 4. Experiment schedule of test set data

      View table

      Table 4. Experiment schedule of test set data

      ExperimentNo.P /Wvp /(g·s-1)vs /(mm·s-1)E /mm
      16000.22910
      24000.141011
      35000.181011
      46000.24810
      57000.161210
      67000.26610
      74000.161011
      87000.16710
      96000.20911
      106500.26810
    • Table 5. Error analysis of predicted results of different models%

      View table

      Table 5. Error analysis of predicted results of different models%

      ModelPredicted width ofcladding tracksPredicted height ofcladding tracks
      MREMaximum REMREMaximum RE
      BP network6.7212.467.9610.71
      Polynomial-SVR8.9410.539.7314.85
      RBF-SVR4.587.925.338.09
      Sigmoid-SVR6.688.788.3410.16
    Tools

    Get Citation

    Copy Citation Text

    Yao Wang, Huang Yanlu, Yang Yongqiang. Size Prediction of Directed Energy Deposited Cladding Tracks Based on Support Vector Regression[J]. Chinese Journal of Lasers, 2020, 47(8): 802007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 2, 2020

    Accepted: --

    Published Online: Aug. 17, 2020

    The Author Email: Yanlu Huang (yanlu@scut.edu.cn)

    DOI:10.3788/CJL202047.0802007

    Topics