Journal of Synthetic Crystals, Volume. 50, Issue 11, 1995(2021)
Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3
[1] [1] DE BOISBAUDRAN L. On the chemical and spectroscopic characters of a new metal (gallium)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1875, 50(332): 414-416.
[2] [2] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722.
[3] [3] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.
[4] [4] STEPANOV S, NIKOLAEV V, BOUGROV V, et al. Gallium oxide: properties and apply: a review[J]. Rev Adv Mater Sci, 2016, 44: 63-86.
[9] [9] TOMM Y, KO J M, YOSHIKAWA A, et al. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications[J]. Solar Energy Materials and Solar Cells, 2001, 66(1/2/3/4): 369-374.
[10] [10] FUKUDA T, SHIMAMURA K, YOSHIKAWA A, et al. Crystal growth of new functional materials for electro-optical applications[C]//Proc SPIE 4412, International Conference on Solid State Crystals 2000: Growth, Characterization, and Applications of Single Crystals, 2001, 4412: 18-25.
[11] [11] VILLORA E G, ATOU T, SEKIGUCHI T, et al. Cathodoluminescence of undoped β-Ga2O3 single crystals[J]. Solid State Communications, 2001, 120(11): 455-458.
[12] [12] VILLORA E G, MORIOKA Y, ATOU T, et al. Infrared reflectance and electrical conductivity of β-Ga2O3[J]. Physica Status Solidi (a), 2002, 193(1): 187-195.
[13] [13] VILLORA E G, MURAKAMI Y, SUGAWARA T, et al. Electron microscopy studies of microstructures in β-Ga2O3 single crystals[J]. Materials Research Bulletin, 2002, 37(4): 769-774.
[14] [14] GARCA VLLORA E, HATANAKA K, ODAKA H, et al. Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses[J]. Solid State Communications, 2003, 127(5): 385-388.
[15] [15] YAMAGA M, VLLORA E G, SHIMAMURA K, et al. Donor structure and electric transport mechanism in β-Ga2O3[J]. Physical Review B, 2003, 68(15): 155207.
[16] [16] VLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426.
[17] [17] SHIMAMURA K, VILLORA E G, MURAMATU K, et al. Optoelectronic single-crystal candidates for UV/VUV light sources ( Crystal Growth Technology of Fluoride and Oxide Developed from the Viewpoint of Their Material and Functional Properties)[J]. J Jpn Assoc Cryst Growth, 2006, 33: 147-154.
[18] [18] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3Single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8506-8509.
[19] [19] VLLORA E G, SHIMAMURA K, KITAMURA K, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(3): 031105.
[20] [20] OSHIMA T, OKUNO T, FUJITA S. Ga2O3Thin film growth onc-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220.
[21] [21] OHIRA S, YOSHIOKA M, SUGAWARA T, et al. Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3[J]. Thin Solid Films, 2006, 496(1): 53-57.
[22] [22] OHIRA S, SUZUKI N, ARAI N, et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing[J]. Thin Solid Films, 2008, 516(17): 5763-5767.
[23] [23] OHIRA S, ARAI N, OSHIMA T, et al. Atomically controlled surfaces with step and terrace of β-Ga2O3 single crystal substrates for thin film growth[J]. Applied Surface Science, 2008, 254(23): 7838-7842.
[24] [24] OSHIMA T, ARAI N, SUZUKI N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy[J]. Thin Solid Films, 2008, 516(17): 5768-5771.
[25] [25] OSHIMA T, FUJITA S. Properties of Ga2O3-based (InxGa1-x)2O3 alloy thin films grown by molecular beam epitaxy[J]. Physica Status Solidi C, 2008, 5(9): 3113-3115.
[26] [26] OSHIMA T, OKUNO T, ARAI N, et al. β-Al2xGa2-2xO3Thin film growth by molecular beam epitaxy[J]. Japanese Journal of Applied Physics, 2009, 48(7): 070202.
[27] [27] SHIMAMURA K, VLLORA E G, DOMEN K, et al. Epitaxial growth of GaN on (100) β-Ga2O3Substrates by metalorganic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2005, 44(1): L7-L8.
[28] [28] VLLORA E G, SHIMAMURA K, KITAMURA K, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3[J]. Applied Physics Letters, 2007, 90(23): 234102.
[29] [29] OSHIMA T, OKUNO T, ARAI N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3Substrates[J]. Applied Physics Express, 2008, 1(1): 011202.
[30] [30] OSHIMA T, OKUNO T, ARAI N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605.
[31] [31] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504.
[32] [32] SASAKI K, KURAMATA A, MASUI T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502.
[33] [33] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Research and development on Ga2O3 transistors and diodes[C]//The 1 st IEEE Workshop on Wide Bandgap Power Devices and Applications. October 27-29, 2013, Columbus, OH, USA. IEEE, 2013: 100-103.
[34] [34] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 21-26.
[35] [35] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Current status of gallium oxide-based power device technology[C]//2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). October 11-14, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4.
[36] [36] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001.
[37] [37] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//SPIE OPTO. Proc SPIE 10533, Oxide-Based Materials and Devices Ⅸ, San Francisco, California, USA. 2018, 1053: 9-14.
[38] [38] NOMURA K, GOTO K, TOGASHI R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2014, 405: 19-22.
[39] [39] MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of β-Ga2O3layers by halide vapor phase epitaxy[J]. Applied Physics Express, 2015, 8(1): 015503.
[40] [40] GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236.
[41] [41] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191.
[42] [42] SCHEWSKI R, BALDINI M, IRMSCHER K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates-a quantitative model[J]. Journal of Applied Physics, 2016, 120(22): 225308.
[43] [43] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215.
[44] [44] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902-905.
[45] [45] CHABAK K D, MOSER N, GREEN A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage[J]. Applied Physics Letters, 2016, 109(21): 213501.
[46] [46] CHABAK K, GREEN A, MOSER N, et al. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation[C]//2017 75th Annual Device Research Conference (DRC). June 25-28, 2017, South Bend, IN, USA. IEEE, 2017: 1-2.
[47] [47] MOSER N, MCCANDLESS J, CRESPO A, et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778.
[48] [48] CHABAK K D, MCCANDLESS J P, MOSER N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(1): 67-70.
[49] [49] LIDDY K J, GREEN A J, HENDRICKS N S, et al. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates[J]. Applied Physics Express, 2019, 12(12): 126501.
[50] [50] LI W S, HU Z Y, NOMOTO K, et al. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of 1 μA/cm2[J]. Applied Physics Letters, 2018, 113(20): 202101.
[51] [51] LI W S, NOMOTO K, HU Z Y, et al. 1.5 kV vertical Ga2O3 trench-MIS Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2.
[52] [52] LI W S, HU Z Y, NOMOTO K, et al. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current[J]. 2018 IEEE International Electron Devices Meeting (IEDM), 2018: 8.5.1-8.5.4.
[53] [53] ALLEN N, XIAO M, YAN X D, et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: a baliga's figure-of-merit of 0.6 GW/cm2[J]. IEEE Electron Device Letters, 2019, 40(9): 1399-1402.
[54] [54] LI W S, NOMOTO K, HU Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2[J]. IEEE Electron Device Letters, 2020, 41(1): 107-110.
[55] [55] YANG J C, REN F, TADJER M, et al. 2.3 kV field-plated vertical Ga2O3 Schottky rectifiers and 1 a forward current with 650 V reverse breakdown Ga2O3 field-plated Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2.
[56] [56] ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388.
[57] [57] SHARMA S, ZENG K, SAHA S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage[J]. IEEE Electron Device Letters, 2020, 41(6): 836-839.
[58] [58] YAO Y, DAVIS R F, PORTER L M. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties[J]. Journal of Electronic Materials, 2017, 46(4): 2053-2060.
[59] [59] BROOKS TELLEKAMP M, HEINSELMAN K N, HARVEY S, et al. Growth and characterization of homoepitaxial β-Ga2O3 layers[J]. Journal of Physics D: Applied Physics, 2020, 53(48): 484002.
[60] [60] JI M, TAYLOR N R, KRAVCHENKO I, et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes[J]. IEEE Transactions on Power Electronics, 2020, 36(1): 41-44.
[61] [61] YANG T H, FU H Q, CHEN H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801.
[62] [62] KWON Y, LEE G, OH S, et al. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching[J]. Applied Physics Letters, 2017, 110(13): 131901.
[63] [63] JANG S, JUNG S, BEERS K, et al. A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3[J]. Journal of Alloys and Compounds, 2018, 731: 118-125.
[64] [64] MUN J K, CHO K, CHANG W, et al. Editors’ choice-2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3079-Q3082.
[65] [65] ZHANG J G, XIA C T, DENG Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3:Sn[J]. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1656-1659.
[66] [66] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458.
[67] [67] MU W X, JIA Z T, YIN Y R, et al. One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors[J]. CrystEngComm, 2017, 19(34): 5122-5127.
[68] [68] MU W X, YIN Y R, JIA Z T, et al. An extended application of β-Ga2O3 single crystals to the laser field: Cr4+: β-Ga2O3 utilized as a new promising saturable absorber[J]. RSC Advances, 2017, 7(35): 21815-21819.
[69] [69] FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. Cryst Eng Comm, 2020, 22(30): 5060-5066.
[71] [71] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. CrystEngComm, 2020, 22(5): 924-931.
[72] [72] ZHANG S N, LIAN X Z, MA Y C, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors, 2018, 39(8): 083003.
[74] [74] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507.
[75] [75] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003.
[76] [76] L Y, SONG X B, HE Z Z, et al. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V[J]. Journal of Semiconductors, 2019, 40(1): 012803.
[77] [77] FENG Q, HUANG L, HAN G Q, et al. Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire[J]. IEEE Transactions on Electron Devices, 2016, 63(9): 3578-3583.
[78] [78] HU Z Z, ZHOU H, DANG K, et al. Lateral β -Ga2O3 Schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV[J]. IEEE Journal of the Electron Devices Society, 2018, 6: 815-820.
[79] [79] ZHANG T, HU Z G, LI Y F, et al. Comparison of Ga2O3 films grown on m- and r-plane sapphire substrates by MOCVD[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 125008.
[80] [80] FENG Z Q, CAI Y C, YAN G S, et al. A 800 V β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high-power figure of merit of over 86.3 MW·cm-2[J]. Physica Status Solidi (a), 2019, 216(20): 1900421.
[81] [81] HU Z Z, ZHOU H, FENG Q, et al. Field-plated lateral β -Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2[J]. IEEE Electron Device Letters, 2018, 39(10): 1564-1567.
[82] [82] GUO Z, VERMA A, WU X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide[J]. Applied Physics Letters, 2015, 106(11): 111909.
[83] [83] XU W H, WANG Y B, YOU T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[J]. 2019 IEEE International Electron Devices Meeting (IEDM), 2019: 12.5.1-12.5.4.
[84] [84] HIGASHIWAKI M, SASAKI K, KAMIMURA T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511.
[85] [85] ZHANG K H L, XI K, BLAMIRE M G, et al. P-type transparent conducting oxides[J]. Journal of Physics: Condensed Matter, 2016, 28(38): 383002.
[86] [86] WILLIAMSON B A D, BUCKERIDGE J, BROWN J, et al. Engineering valence band dispersion for high mobility p-type semiconductors[J]. Chemistry of Materials, 2017, 29(6): 2402-2413.
[87] [87] TANG C, SUN J, LIN N, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study[J]. RSC Advances, 2016, 6(82): 78322-78334.
[88] [88] YAN C Y, SU J, WANG Y F, et al. Reducing the acceptor levels of p-type β-Ga2O3 by (metal, N) co-doping approach[J]. Journal of Alloys and Compounds, 2021, 854: 157247.
[89] [89] JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226.
Get Citation
Copy Citation Text
WANG Xinyue, ZHANG Shengnan, HUO Xiaoqing, ZHOU Jinjie, WANG Jian, CHENG Hongjuan. Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3[J]. Journal of Synthetic Crystals, 2021, 50(11): 1995
Category:
Received: Aug. 20, 2021
Accepted: --
Published Online: Feb. 14, 2022
The Author Email: Xinyue WANG (wangxinyue@tju.edu.cn)
CSTR:32186.14.