Acta Optica Sinica, Volume. 42, Issue 18, 1806002(2022)

Temperature Influence of Multi-Optical Axis Consistency in Compound Laser Communication System

Xiang Li1,3, He Liu2、*, Liang Gao1,3, Yan An1,3, Yansong Song1,3, Ziting Sun2, Yongqi Zhu2, Wenqiang Xi2, and Chen Zhou2
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 2College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 3National and Local Joint Engineering Research Center of Space and Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    Figures & Tables(17)
    Working principle of system
    Design of double layer structure
    Local coordinate systems. (a) Local coordinate system of first layer; (b) local coordinate system of second layer
    Finite element model of reflector 2
    Results of temperature analysis of mirrors. (a) FSM of fine tracking system; (b) reflector 1; (c) FSM of AO system; (d) turning reflector; (e) deformation mirror; (f) reflector 2; (g) 800 nm/1500 nm spectroscope; (h) 830 nm energy spectroscope; (i) 1550 nm/1530 nm spectroscope
    Coordinate system of matrix calculation
    Description of ridge surface. (a) Local optical path of system; (b) sketch of ridge surface
    Thermal drift experimental situation
    External experiment condition
    Results of external experiment. (a) Energy of communication receiving; (b) light spot of fine tracking system; (c) light spot of AO system
    • Table 1. Maximum value of mirror deformation unit: mm

      View table

      Table 1. Maximum value of mirror deformation unit: mm

      MirrorMaximum value
      FSM of fine tracking subsystem0.059
      Reflector 10.029
      FSM of AO subsystem0.061
      Turning reflector0.071
      Deformation mirror0.063
      Reflector 20.074
      800 nm/1500 nm spectroscope0.062
      830 nm energy spectroscope0.058
      1550 nm/1530 nm spectroscope0.068
    • Table 2. Deflection angle of each mirror surface unit: μrad

      View table

      Table 2. Deflection angle of each mirror surface unit: μrad

      MirrorθXiθYi
      FSM of fine tracking system(θX1/θY1-32.3626.19
      Reflector 1(θX2/θY21.39-30.82
      FSM of AO system(θX3/θY3-186.4922.29
      Turning reflector(θX4/θY4-1.25-8.12
      Deformation mirror(θX5/θY5-1.58-17.35
      Reflector 2(θX6/θY6-1.9726.93
      800 nm/1500 nm spectroscope(θX7/θY7-1.28-52.43
      830 nm energy spectroscope(θX8/θY8-65.647.07
      1550 nm/1530 nm spectroscope(θX9/θY9-2.75-18.97
    • Table 3. Values of λi0, PXi, and PYi

      View table

      Table 3. Values of λi0, PXi, and PYi

      Mirrorλi0 /(°)PXiPYi
      FSM of fine tracking system(i=1-900,0,10.707,0.707,0
      Reflector 1(i=2900,0,1-0.707,0.707,0
      FSM of AO system(i=3-900.707,0.707,00,0,1
      Turning reflector(i=4-900.707,0.707,00,0,1
      Deformation mirror(i=51600,0,10.174,-0.985,0
      Reflector 2(i=61100,0,10.574,-0.819,0
      800 nm/1500 nm spectroscope(i=7900,0,10.707,-0.707,0
      830 nm energy spectroscope(i=8-900,0,10.707,0.707,0
      1550 nm/1530 nm spectroscope(i=9-900,0,1-0.707,-0.707,0
    • Table 4. Deflection angle of each reflected optical axis

      View table

      Table 4. Deflection angle of each reflected optical axis

      MirrorθXi'θYi'
      FSM of fine tracking system(θX1'/θY1'-64.7237.05
      Reflector 1(θX2'/θY2'-2.78-43.55
      FSM of AO system(θX3'/θY3'-263.7144.58
      Turning reflector(θX4'/θY4'-1.8416.24
      Deformation mirror(θX5'/θY5'3.1632.59
      Reflector 2(θX6'/θY6'-3.94-34.37
      800 nm/1500 nm spectroscope(θX7'/θY7'2.5674.09
      830 nm energy spectroscope(θX8'/θY8'-131.28-10.04
      1550 nm/1530 nm spectroscope(θX9'/θY9'-5.5026.82
    • Table 5. Record of temperature and coordinate

      View table

      Table 5. Record of temperature and coordinate

      Temperature /℃Coordinate 1Coordinate 2Coordinate 3Average of coordinates 1-3
      20(432,-261)(426,-265)(421,-264)(426.33,-263.33)
      24(390,-239)(387,-255)(387,-245)(388.00,-246.33)
      28(369,-239)(364,-250)(366,-248)(366.33,-245.67)
      30(345,-240)(341,-243)(339,-245)(341.67,-242.67)
    • Table 6. Offset of light spot

      View table

      Table 6. Offset of light spot

      Temperature /℃MXMY
      2000
      24-38.3317.00
      28-60.0017.66
      30-84.6620.66
    • Table 7. Comparison of experiment results and simulation results

      View table

      Table 7. Comparison of experiment results and simulation results

      DirectionSimulation deflection angle /μradExperimental deflection angle /μradError /%
      X-462.55-423.309.27
      Y116.59103.3012.87
    Tools

    Get Citation

    Copy Citation Text

    Xiang Li, He Liu, Liang Gao, Yan An, Yansong Song, Ziting Sun, Yongqi Zhu, Wenqiang Xi, Chen Zhou. Temperature Influence of Multi-Optical Axis Consistency in Compound Laser Communication System[J]. Acta Optica Sinica, 2022, 42(18): 1806002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Dec. 30, 2021

    Accepted: Mar. 2, 2022

    Published Online: Sep. 15, 2022

    The Author Email: Liu He (liuhemagic@163.com)

    DOI:10.3788/AOS202242.1806002

    Topics