Optics and Precision Engineering, Volume. 31, Issue 18, 2765(2023)
Polyp image segmentation based on multi-scale ResNeSt-50 aggregation network and message passing
[1] SILVA J, HISTACE A, ROMAIN O et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 9, 283-293(2014).
[2] [2] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.005ZHENGR S, SUNK X, ZHANGS W, et al. Report of cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019, 41(1): 19-28.(in Chinese). doi: 10.3760/cma.j.issn.0253-3766.2019.01.005
[3] ARAN V, VICTORINO AP, THULER LC et al. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality[J]. Clinical Colorectal Cancer, 15, 195-203(2016).
[4] [4] 江贵平, 秦文健, 周寿军, 等. 医学图像分割及其发展现状[J]. 计算机学报, 2015, 38(6)1222-1242. doi: 10.11897/SP.J.1016.2015.01222JIANGG P, QINW J, ZHOUS J, et al. State-of-the-art in medical image segmentation[J]. Chinese Journal of Computers, 2015, 38(6)1222-1242(in Chinese). doi: 10.11897/SP.J.1016.2015.01222
[5] [5] 田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3)401-424. doi: 10.16383/j.aas.2018.c170153TIANJ X, LIUG C, GUS S, et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44(3)401-424(in Chinese). doi: 10.16383/j.aas.2018.c170153
[6] [6] 李少东,洪森,李世权等.人工智能利用图像深度学习诊疗消化道肿瘤的现状及展望[J].中国普外基础与临床杂志,2021,28(11):1524-1529. doi: 10.7507/1007-9424.202012127LISH D, HONGS, LISH Q, et al. Current situation and prospect of artificial intelligence in the diagnosis and treatment of. doi: 10.7507/1007-9424.202012127gastrointestinal tumors using image deep learning[J]. Chinese Journal of Bases and Clinics in General Surgery, 2021,28(11):1524-1529. doi: 10.7507/1007-9424.202012127
[7] [7] 吴锦珍, 谢玥, 王新颖. 人工智能在结直肠息肉性质鉴别中的应用进展[J]. 中华消化内镜杂志, 2020, 37(11):849-852. doi: 10.3760/cma.j.cn321463-20200610-00515WUJ Z, XIEY, WANGX Y. Application progress of artificial intelligence in identification of colorectal polyps[J]. Chinese Journal of Digestive Endoscopy, 2020, 37(11): 849-852. (in Chinese). doi: 10.3760/cma.j.cn321463-20200610-00515
[8] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[9] RONNEBERGER O, FISCHER P, BROX T.
[11] SMEDSRUD P H, RIEGLER M A et al. ResUNet: an advanced architecture for medical image segmentation[C], 225-2255(9).
[12] FAN D P, JI G P, ZHOU T et al.
[13] RIEGLER M A, JOHANSEN D et al. DoubleU-net: a deep convolutional neural network for medical image segmentation[C], 558-564(28).
[14] FANG Y Q, ZHU D L, YAO J H et al. ABC-net: area-boundary constraint network with dynamical feature selection for colorectal polyp segmentation[J]. IEEE Sensors Journal, 21, 11799-11809(2021).
[15] ZHANG R F, LI G B, LI Z et al. Adaptive Context Selection for Polyp Segmentation[M]. Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, 253-262(2020).
[16] [16] 刘佳伟, 刘巧红, 李晓欧, 等. 一种改进的双U型网络的结肠息肉分割方法[J]. 光学学报, 2021, 41(18): 1810001. doi: 10.3788/aos202141.1810001LIUJ W, LIUQ H, LIX O, et al. Improved colonic polyp segmentation method based on double U-shaped network[J]. Acta Optica Sinica, 2021, 41(18): 1810001.(in Chinese). doi: 10.3788/aos202141.1810001
[17] [17] 撖子奇, 刘巧红, 凌晨, 等. 结合HarDNet和反向注意力的息肉分割方法[J]. 激光与光电子学进展, 2023, 60(2): 3788/LOP212665. doi: 10.3788/LOP212665HANZ Q, LIUQ H, LINGC, et al. Polyp segmentation method combining HarDNet and reverse attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 3788/LOP212665.(in Chinese). doi: 10.3788/LOP212665
[18] ZHANG H, WU C R, ZHANG Z Y et al. ResNeSt: split-attention networks[C], 2735-2745(19).
[19] LIU S T, HUANG D, WANG Y H. Receptive Field Block Net for Accurate and Fast Object Detection[M]. Computer Vision-ECCV 2018, 404-419(2018).
[21] YAMADA M, SAITO Y, IMAOKA H et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy[J]. Scientific Reports, 9, 14465(2019).
[22] WAINWRIGHT M J, JAAKKOLA T S, WILLSKY A S. MAP estimation via agreement on trees: message-passing and linear programming[J]. IEEE Transactions on Information Theory, 51, 3697-3717(2005).
[23] SZELISKI R, ZABIH R, SCHARSTEIN D et al. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1068-1080(2008).
[24] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(27).
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(18).
[26] LI X, WANG W H, HU X L et al. Selective kernel networks[C], 510-519(15).
[27] XIE S N, GIRSHICK R, DOLLÁR P et al. Aggregated residual transformations for deep neural networks[C], 5987-5995(21).
[28] ZHANG H, ZU K K, LU J et al.
[29] WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C], 3902-3911(15).
[30] KOLMOGOROV V. Convergent tree-reweighted message passing for energy minimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1568-1583(2006).
[31] YANG X, GAO X B, TAO D C et al. An efficient MRF embedded level set method for image segmentation[J]. IEEE Transactions on Image Processing, 24, 9-21(2015).
[32] [32] 夏平, 施宇, 雷帮军, 等. 复小波域混合概率图模型的超声医学图像分割[J]. 自动化学报, 2021, 47(1):185-196. doi: 10.16383/j.aas.c180132XIAP, SHIY, LEIB J, et al. Ultrasound medical image segmentation based on hybrid probabilistic graphical model in complex-wavelet domain[J]. Acta Automatica Sinica, 2021, 47(1):185-196.(in Chinese). doi: 10.16383/j.aas.c180132
[33] BERNAL J, SÁNCHEZ FJ, FERNÁNDEZ-ESPARRACH G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation
[34] SMEDSRUD P H, RIEGLER M A et al.
[35] TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 35, 630-644(2016).
[36] VÁZQUEZ D, BERNAL J et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 4037190(2017).
[37] LIU L, JIANG H, HE P et al. On the variance of the adaptive learning rate and beyond[J]. arXiv e-prints(2019).
[38] FANG Y Q, CHEN C, YUAN Y X et al. Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation[M]. Lecture Notes in Computer Science, 302-310(2019).
[39] QIN X B, ZHANG Z C, HUANG C Y et al. BASNet: boundary-aware salient object detection[C], 7471-7481(15).
[40] WEI J, WANG S H, HUANG Q M. F³Net: fusion, feedback and focus for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12321-12328(2020).
[41] FAN D P, CHENG M M, LIU Y et al. Structure-measure: a new way to evaluate foreground maps[C], 4558-4567(22).
Get Citation
Copy Citation Text
Ping XIA, Guangyi ZHANG, Bangjun LEI, Yaobing ZOU, Tinglong TANG. Polyp image segmentation based on multi-scale ResNeSt-50 aggregation network and message passing[J]. Optics and Precision Engineering, 2023, 31(18): 2765
Category: Information Sciences
Received: Mar. 30, 2023
Accepted: --
Published Online: Oct. 12, 2023
The Author Email: Bangjun LEI (Bangjun.Lei@ieee.org)