Journal of Synthetic Crystals, Volume. 51, Issue 4, 628(2022)
Theoretical Study on Schottky Interfacial Charge and Schottky Regulation of ZnO/Graphene by Doping of Nonmetallic Elements (F, S, Se, Te)
[1] [1] GUSTAFSSON M V, YANKOWITZ M, FORSYTHE C, et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2[J]. Nature Materials, 2018, 17(5): 411-415.
[2] [2] RIGOSI A F, HILL H M, LI Y L, et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2[J]. Nano Letters, 2015, 15(8): 5033-5038.
[3] [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[4] [4] HE J, LILLEY C M. Surface effect on the elastic behavior of static bending nanowires[J]. Nano Letters, 2008, 8(7): 1798-1802.
[5] [5] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[6] [6] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[7] [7] STOLLER M D, PARK S, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
[8] [8] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[9] [9] AKBARI A, CUNNING B V, JOSHI S R, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter, 2020, 2(5): 1198-1206.
[10] [10] KANDASAMY S K, KANDASAMY K. Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3): 559-584.
[13] [13] FREEMAN C L, CLAEYSSENS F, ALLAN N L, et al. Graphitic nanofilms as precursors to wurtzite films: theory[J]. Physical Review Letters, 2006, 96(6): 066102.
[14] [14] TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets[J]. Physical Review Letters, 2007, 99(2): 026102.
[15] [15] FARKOUS M, BIKEROUIN M, PHUNG H T T, et al. Electronic and optical properties of layered van der Waals heterostructure based on MS2 (M=Mo, W) monolayers[J]. Materials Research Express, 2019, 6(6): 065060.
[17] [17] XU P T, TANG Q, ZHOU Z. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations[J]. Nanotechnology, 2013, 24(30): 305401.
[18] [18] LIU S, LIAO Q L, LU S N, et al. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance[J]. Advanced Functional Materials, 2016, 26(9): 1347-1353.
[19] [19] LI Y P, LI Y F, ZHANG J H, et al. Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact[J]. Journal of Physics D: Applied Physics, 2018, 51(9): 095104.
[22] [22] GAO H Y, WANG J Y, JIA M Y, et al. Two-phase interface-facilitated synthesis of graphene-like carbon nanosheets and their interfacial assembly behaviors[J]. Chemical Physics, 2019, 516: 132-138.
[23] [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[24] [24] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Physical Review B, 2006, 73: 205101.
[25] [25] GAO X, SHEN Y Q, MA Y Y, et al. ZnO/g-GeC van der Waals heterostructure: novel photocatalyst for small molecule splitting[J]. Journal of Materials Chemistry C, 2019, 7(16): 4791-4799.
[26] [26] EBNONNASIR A, NARAYANAN B, KODAMBAKA S, et al. Tunable MoS2 bandgap in MoS2-graphene heterostructures[J]. Applied Physics Letters, 2014, 105(3): 031603.
[27] [27] MAROM N, TKATCHENKO A, SCHEFFLER M, et al. Describing both dispersion interactions and electronic structure using density functional theory: the case of metal-phthalocyanine dimers[J]. Journal of Chemical Theory and Computation, 2010, 6(1): 81-90.
[28] [28] CHOUDHARY K, TAVAZZA F. Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations[J]. Computational Materials Science, 2019, 161: 300-308.
[30] [30] BJRKMAN T, GULANS A, KRASHENINNIKOV A V, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations[J]. Physical Review Letters, 2012, 108(23): 235502.
[31] [31] KARTAMYSHEV A I, VU T V, AHMAD S, et al. First-principles calculations to investigate electronic properties of ZnO/PtSSe van der Waals heterostructure: effects of vertical strain and electric field[J]. Chemical Physics, 2021, 551: 111333.
[32] [32] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
[33] [33] SUN M L, CHOU J P, REN Q Q, et al. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN[J]. Applied Physics Letters, 2017, 110(17): 173105.
[34] [34] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. Applied Physics Reviews, 2014, 1(1): 011304.
Get Citation
Copy Citation Text
PANG Guowang, LIU Chenxi, PAN Duoqiao, SHI Leiqian, ZHANG Lili, LEI Bocheng, ZHAO Xucai, HUANG Yineng, TANG Zhe. Theoretical Study on Schottky Interfacial Charge and Schottky Regulation of ZnO/Graphene by Doping of Nonmetallic Elements (F, S, Se, Te)[J]. Journal of Synthetic Crystals, 2022, 51(4): 628
Category:
Received: Jan. 4, 2022
Accepted: --
Published Online: Jun. 14, 2022
The Author Email: Guowang PANG (pgw210126@sina.com)
CSTR:32186.14.