Journal of Synthetic Crystals, Volume. 51, Issue 11, 1973(2022)

Research Progress of Dislocations in SiC Single Crystal

ZHANG Jiaxin*, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, and XU Xiangang
Author Affiliations
  • [in Chinese]
  • show less
    References(72)

    [1] [1] MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.

    [3] [3] DUAN P, PENG Y, WANG X W, et al. Preparation of high surface quality HTHP diamond for MPCVD diamond film growth[J]. Journal of Materials Review, 2021, 35(4): 4034-4037+4041.

    [4] [4] HOMA M, SOBCZAK N, SOBCZAK J J, et al. Interaction between graphene-coated SiC single crystal and liquid copper[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2317-2329.

    [5] [5] CHAVOSHI S Z, LUO X C. Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC[J]. RSC Advances, 2016, 6(75): 71409-71424.

    [6] [6] WEI W S, MO Y D, YU S H, et al. Influence of SiC hetero-polytype barriers on the performance of IMPATT terahertz diodes[J]. Superlattices and Microstructures, 2021, 152: 106844.

    [7] [7] YANG H, ZHAO H S, WANG T W, et al. Preparation and antioxidant mechanism of TiSi2-Si-SiC/SiC bilayer coating on matrix graphite[J]. Journal of Alloys and Compounds, 2021, 858: 157721.

    [8] [8] CHEN S L, ZHAO L F, WANG L, et al. Single-crystal N-doped SiC nanochannel array photoanode for efficient photoelectrochemical water splitting[J]. Journal of Materials Chemistry C, 2019, 7(11): 3173-3180.

    [9] [9] YU J Y, YU Y, BAI Z Q, et al. Morphological and microstructural analysis of triangular defects in 4H-SiC homoepitaxial layers[J]. CrystEngComm, 2022, 24(8): 1582-1589.

    [10] [10] YANG J W, SONG H P, JIAN J K, et al. Characterization of morphological defects related to micropipes in 4H-SiC thick homoepitaxial layers[J]. Journal of Crystal Growth, 2021, 568/569: 126182.

    [11] [11] PARTHIBAN K, LAKSHMANAN P, GNANAVELBABU A. Experimental and theoretical yield strength of silicon carbide and hexagonal boron nitride reinforced Mg-Zn nanocomposites produced by the combined effects of ultrasonication and squeeze casting[J]. Silicon, 2022, 14(14): 8993-9007.

    [12] [12] SUMATHI R R. Review-status and challenges in hetero-epitaxial growth approach for large diameter AlN single crystalline substrates[J]. ECS Journal of Solid State Science and Technology, 2021, 10(3): 035001.

    [13] [13] KIM J G, YOO W S, PARK J Y, et al. Quantitative analysis of contact angle of water on SiC: polytype and polarity dependence[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 123006.

    [14] [14] HUANG Y H, WANG M C, LI J M, et al. Removal behavior of micropipe in 4H-SiC during micromachining[J]. Journal of Manufacturing Processes, 2021, 68: 888-897.

    [15] [15] MCGUIRE S, BLASI R, WU P, et al. Automated mapping of micropipes in SiC wafers using polarized-light microscope[J]. Materials Science Forum, 2018, 924: 527-530.

    [16] [16] LIU C J, PENG T H, WANG B, et al. Progress in single crystal growth of wide bandgap semiconductor SiC[J]. Materials Science Forum, 2019, 954: 35-45.

    [17] [17] ARORA A, PATEL A, YADAV B S, et al. Study on evolution of micropipes from hexagonal voids in 4H-SiC crystals by cathodoluminescence imaging[J]. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2021, 27(1): 215-226.

    [19] [19] KLEPPINGER J W, CHAUDHURI S K, KARADAVUT O, et al. Defect characterization and charge transport measurements in high-resolution Ni/n-4H-SiC Schottky barrier radiation detectors fabricated on 250 μm epitaxial layers[J]. Journal of Applied Physics, 2021, 129(24): 244501.

    [20] [20] AILIHUMAER T, PENG H Y, RAGHOTHAMACHAR B, et al. Relationship between basal plane dislocation distribution and local basal plane bending in PVT-grown 4H-SiC crystals[J]. Journal of Electronic Materials, 2020, 49(6): 3455-3464.

    [21] [21] ZHAO L Y, YAN H, CHEN R S, et al. Quasi-in-situ observations of low-angle grain boundaries, twins and texture evolution during continuous annealing in a cold-rolled Mg-Zn-Gd alloy[J]. Materials Characterization, 2020, 170: 110697.

    [22] [22] KOBAYASHI S, YANG W T, TOMOBE Y, et al. Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel[J]. Journal of Materials Science, 2020, 55(22): 9273-9285.

    [23] [23] ABBASI A, FARUQUE A, ROY S, et al. Gate driver design in a 1 μm SiC CMOS process for heterogeneous integration inside SiC power module[J]. International Symposium on Microelectronics, 2020(1): 281-285.

    [24] [24] SUDARSHAN T S, MAXIMENKO S I. Bulk growth of single crystal silicon carbide[J]. Microelectronic Engineering, 2006, 83(1): 155-159.

    [25] [25] CHEN P C, MIAO W C, AHMED T, et al. Defect inspection techniques in SiC[J]. Nanoscale Research Letters, 2022, 17(1): 30.

    [28] [28] ZHOU X T, JIA Y P, HU D Q, et al. A simulation-based comparison between Si and SiC MOSFETs on single-event burnout susceptibility[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2551-2556.

    [29] [29] CHEN X Y, JIANG S, CHEN Y, et al. Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures[J]. Cryogenics, 2022, 122: 103424.

    [30] [30] SAMESHIMA J, SUGAHARA T, ISHINA T, et al. 3D imaging of backside metallization of SiC-SBD influenced by annealing[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(11): 10848-10856.

    [31] [31] LU W H, WAN C P, ZHANG X Z, et al. The influence to uniform current distribution of SiC MOSFET modules based on the 3rd quadrant characteristics[J]. IOP Conference Series: Earth and Environmental Science, 2021, 772(1): 012032.

    [32] [32] WANG D W, HU R B, CHEN G, et al. Heavy ion radiation and temperature effects on SiC Schottky barrier diode[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 491: 52-58.

    [33] [33] MAXIMENKO S I, PIROUZ P, SUDARSHAN T S. Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes[J]. Applied Physics Letters, 2005, 87(3): 033503.

    [34] [34] GALECKAS A, LINNROS J, PIROUZ P. Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC[J]. Physical Review Letters, 2006, 96(2): 025502.

    [35] [35] HEYDEMANN V D, SCHULZE N, BARRETT D L, et al. Growth of 6H and 4H silicon carbide single crystals by the modified Lely process utilizing a dual-seed crystal method[J]. Applied Physics Letters, 1996, 69(24): 3728-3730.

    [36] [36] JAYATIRTHA H N, SPENCER M G, TAYLOR C, et al. Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method[J]. Journal of Crystal Growth, 1997, 174(1/2/3/4): 662-668.

    [37] [37] AVROV D D, BULATOV A V, DOROZHKIN S I, et al. Defect formation in silicon carbide large-scale ingots grown by sublimation technique[J]. Journal of Crystal Growth, 2005, 275(1/2): e485-e489.

    [39] [39] KIMOTO T, COOPER J. Fundamentals of silicon carbide technology[J]. Wiley-IEEE Press, 2014, 10.1002/9781118313534:1-10.

    [40] [40] OHTANI N, KATSUNO M, TSUGE H, et al. Propagation behavior of threading dislocations during physical vapor transport growth of silicon carbide (SiC) single crystals[J]. Journal of Crystal Growth, 2006, 286(1): 55-60.

    [41] [41] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101.

    [42] [42] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103.

    [43] [43] SUO H, TSUKIMOTO S, ETO K, et al. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065501.

    [44] [44] TAKAHASHI J, OHTANI N, KANAYA M. Structural defects in α-SiC single crystals grown by the modified-Lely method[J]. Journal of Crystal Growth, 1996, 167(3/4): 596-606.

    [45] [45] WELLMANN P J, QUEREN D, MLLER R, et al. Basal plane dislocation dynamics in highly p-type doped versus highly n-type doped SiC[J]. Materials Science Forum, 2006, 527/528/529: 79-82.

    [46] [46] FRANK F C. Capillary equilibria of dislocated crystals[J]. Acta Crystallographica, 1951, 4(6): 497-501.

    [48] [48] HUANG X R, BLACK D R, MACRANDER A T, et al. High-geometrical-resolution imaging of dislocations in SiC using monochromatic synchrotron topography[J]. Applied Physics Letters, 2007, 91(23): 231903.

    [49] [49] FUJIE F, PENG H Y, AILIHUMAER T, et al. Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC[J]. Acta Materialia, 2021, 208: 116746.

    [50] [50] NISHIGUCHI T, FURUSHO T, ISSHIKI T, et al. Pair-generation of the basal-plane-dislocation during crystal growth of SiC[J]. Materials Science Forum, 2008, 600/601/602/603: 329-332.

    [51] [51] OHTANI, NOBORU. Dislocation formation during physical vapor transport growth of 4H-SiC crystals[J]. Wide Bandgap Semiconductors for Power Electronics: Materials, Devices, Applications, 2021, 1: 1-32.

    [52] [52] OHSHIGE C, TAKAHASHI T, OHTANI N, et al. Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the[1120][J]. Journal of Crystal Growth, 2014, 408: 1-6.

    [53] [53] MATSUHATA H, YAMAGUCHI H, SEKIGUCHI T, et al. Analysis of dislocation structures in 4H-SiC by synchrotron X-ray topography[J]. Electrical Engineering in Japan, 2016, 197(3): 3-17.

    [55] [55] ZHAN S D, DONG B Y, WANG H Q, et al. A novel approach for bulk micromachining of 4H-SiC by tool-based electrolytic plasma etching in HF-free aqueous solution[J]. Journal of the European Ceramic Society, 2021, 41(10): 5075-5087.

    [56] [56] ZIMMER K, EHRHARDT M, LORENZ P, et al. Etching of SiC-SiC-composites by a laser-induced plasma in a reactive gas[J]. Ceramics International, 2022, 48(1): 90-95.

    [57] [57] TOH D, BUI P V, YAMAUCHI K, et al. Photoelectrochemical oxidation assisted catalyst-referred etching for SiC (0001) surface[J]. International Journal of Automation Technology, 2021, 15(1): 74-79.

    [58] [58] YANG T L, KITA K. Considerations on the kinetic correlation between SiC nitridation and etching at the 4H-SiC(0001)/SiO2 interface in N2 and N2/H2 annealing[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1077.

    [59] [59] LI C, HE Z D, WANG Q D, et al. Performance improvement of PEDOT∶PSS/N-Si heterojunction solar cells by alkaline etching[J].Silicon, 2022, 14(5): 2299-2307.

    [60] [60] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Etching kinetics of α-SiC single crystals by molten KOH[J]. Materials Science Forum, 1998, 264/265/266/267/268: 837-840.

    [61] [61] TANI K, FUJIMOTO T, KAMEI K, et al. Evolution of threading edge dislocations at earlier stages of PVT growth for 4H-SiC single crystals[J]. Materials Science Forum, 2016, 858: 73-76.

    [64] [64] RAGHOTHAMACHAR B, DUDLEY M, DHANARAJ G. X-ray topography techniques for defect characterization of crystals[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 1425-1451.

    [65] [65] EUN T H, YEO I G, KIM J Y, et al. Investigation on the threading dislocations formed by lattice misfits during initial stage of sublimation growth of 4H-SiC[J]. Materials Science Forum, 2020, 1004: 51-56.

    [66] [66] BERWIAN P, KAMINZKY D, ROHIRT K, et al. Imaging defect luminescence of 4H-SiC by ultraviolet-photoluminescence[J]. Solid State Phenomena, 2015, 242: 484-489.

    [67] [67] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683.

    [68] [68] FENG X F, ZANG Y. Raman scattering properties of structural defects in SiC[C]//Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology. April 9-10, 2016. Shenzhen, China, Paris, France: Atlantis Press, 2016.

    [69] [69] YANG YING, LIN TAO, CHEN ZHIMING. Effect of growth gas flow rate on the defects of SiC single crystal[J]. Chinese Journal of Semiconductors, 2008, 29(5):851-854.

    [71] [71] CHEN X F, ZHANG F S, YANG X L, et al. Reduction of dislocation density of SiC crystals grown on seeds after H2 etching[J]. 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), 2016: 1.

    [73] [73] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878.

    [74] [74] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74.

    [75] [75] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012.

    [76] [76] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501.

    [77] [77] MANNING I, ZHANG J, THOMAS B, et al. Large area 4H SiC products for power electronic devices[J]. Materials Science Forum, 2016, 858: 11-14.

    [78] [78] TOKUDA Y, HOSHINO N, KUNO H, et al. Fast 4H-SiC bulk growth by high-temperature gas source method[J]. Materials Science Forum, 2020, 1004: 5-13.

    [79] [79] KOJIMA J, TOKUDA Y, MAKINO E, et al. Developing technologies of SiC gas source growth method[J]. Materials Science Forum, 2016, 858: 23-28.

    [80] [80] MANNING I, MATSUDA Y, CHUNG G, et al. Progress in bulk 4H SiC crystal growth for 150 mm wafer production[J]. Materials Science Forum, 2020, 1004: 37-43.

    [81] [81] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10.

    [82] [82] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jiaxin, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, XU Xiangang. Research Progress of Dislocations in SiC Single Crystal[J]. Journal of Synthetic Crystals, 2022, 51(11): 1973

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 18, 2022

    Accepted: --

    Published Online: Jan. 3, 2023

    The Author Email: ZHANG Jiaxin (jiaxin_zhang@mail.sdu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics