Laser & Optoelectronics Progress, Volume. 56, Issue 3, 031009(2019)

Color Image Quality Assessment Based on Quaternion Spectral Residual

Jing Yue**, Guojun Liu*, and Hao Fu
Author Affiliations
  • School of Mathematics & Statistics, Ningxia University, Yinchuan, Ningxia 750021, China
  • show less
    Figures & Tables(10)
    Schematic of color imageconvert to a pure quaternion matrix
    Quaternion gradient maps of color images. (a) Color images; (b) corresponding quaternion gradient maps of (a); (c) color images; (d) corresponding quaternion gradient maps of (c)
    Flowchart of QSR-SIM algorithm
    Regression curves of different image quality evaluation algorithms in TID2013. (a) SSIM; (b) FISM; (c) MS-GMSDc; (d) QSSIM; (e) SR-SIM; (f) QSR-SIM
    Reference image and its distortion images of different types. (a) Reference image I07; (b) I07_11_5; (c) I07_12_4; (d) I07_15_3; (e) I07_17_4; (f) I07_24_5
    • Table 1. Results of five kinds of distorted pictures of reference image I07 in different evaluation algorithm experiments

      View table

      Table 1. Results of five kinds of distorted pictures of reference image I07 in different evaluation algorithm experiments

      AlgorithmI07_11_5I07_12_4I07_15_3I07_17_4I07_24_5
      Subjective score0.97732.86363.04556.72730.4762
      QSR-SIM0.97010.99190.99680.99760.9691
      VSI[4]0.89640.96100.96140.98680.8875
      SR-SIM[3]0.82830.93170.96360.98030.8056
      FSIM[5]0.72030.91500.96100.96210.7137
      SSIM[21]0.59220.72080.96830.95160.6019
      VSNR[23]8.756115.023712.22311.32398.6929
      PSNR[24]23.000726.174327.201425.083623.0449
      GMSD[25]0.24180.12150.12910.02590.2622
    • Table 2. Ranking of different evaluation algorithms

      View table

      Table 2. Ranking of different evaluation algorithms

      AlgorithmI07_11_5I07_12_4I07_15_3I07_17_4I07_24_5
      Subjective score43215
      QSR-SIM43215
      VSI43215
      SR-SIM43215
      FSIM43215
      SSIM53124
      VSNR41235
      PSNR52134
      GMSD42315
    • Table 3. Comparison of time complexity of algorithms

      View table

      Table 3. Comparison of time complexity of algorithms

      DatabaseTime /s
      QSSIMQSR-SIM
      I17_11_21.11240.7474
      TID2013520485
    • Table 4. Comparison of various color image quality assessment methods' performance

      View table

      Table 4. Comparison of various color image quality assessment methods' performance

      DatabaseParameterPSNRSSIMFSIMGMSDMS-GMSDSR-SIMQSR-SIM
      TID2013SROCC0.68690.74170.80150.80300.81390.80730.8169
      KROCC0.49580.55880.62890.63520.64670.64040.6268
      PLCC0.67480.78950.85890.85750.86180.79700.8413
      RMSE0.91490.76080.63490.47620.62880.61930.6701
      CSIQSROCC0.80580.87560.92420.95150.95450.93190.9435
      KROCC0.60840.69070.75670.80210.80750.77250.7821
      PLCC0.80000.86130.91200.94530.95120.92500.8049
      RMSE0.15750.13340.10770.08560.08100.09970.1618
    • Table 5. SROCC values for different distortion types for various evaluation algorithms in the TID2013 database

      View table

      Table 5. SROCC values for different distortion types for various evaluation algorithms in the TID2013 database

      DatabaseDistortiontypeMS-SSIM[26]SSIM_I[27]SSIMIFC[28]VSNRIW-SSIMFSIMSR-SIMVSIQSR-SIM
      TID2013AGN0.86460.86270.86710.66120.82710.84380.89730.92530.94600.9138
      ANC0.77300.77630.77260.53520.73050.75150.82080.85700.87050.8111
      SCN0.85440.85050.85150.66010.80130.81670.87500.92250.93670.8900
      MN0.80730.78950.77670.69320.70720.80200.79440.78600.76970.7036
      HFN0.86040.86880.86340.74060.84550.85530.89840.91320.92000.9042
      IN0.76290.78960.75030.64080.73630.72810.80720.82770.87410.7885
      QN0.87060.84110.86570.62820.83570.84680.87190.85020.87480.8626
      GB0.96730.97240.96680.89070.94700.97010.95510.96200.96120.9118
      DEN0.92680.92960.92540.77790.90810.91520.93020.94030.94840.9366
      JPEG0.92650.92270.92000.83570.90080.91870.93240.93860.95410.9219
      JP2K0.95040.95750.94680.90780.92730.95060.95770.96740.97060.9522
      JGTE0.84750.85810.84930.74250.79080.83880.84640.85430.92160.7764
      J2TE0.88890.88560.88280.77690.84070.86560.89130.91660.92280.8355
      NEPN0.79680.78850.78210.57370.66530.80110.79170.79750.80600.8141
      Block0.48010.45630.57200.24140.17710.37170.54890.47310.17130.5545
      MS0.79060.78450.77520.55220.48710.78330.75310.65760.77000.7762
      CTC0.46340.38000.37750.17980.33200.45930.46860.47050.47540.4671
      CCS0.40990.42080.41410.40290.36770.41960.27480.20530.81000.5359
      MGN0.77860.80920.78030.61430.76440.77280.84690.87780.91170.8110
      CN0.85280.87110.85660.81600.86830.87620.91210.92630.92430.9084
      LCNI0.90680.91730.90570.81800.88210.90370.94660.96080.95640.9406
      ICQD0.85550.83510.85420.60060.86670.84010.87600.88030.88390.8795
      CHA0.87840.87710.87750.82100.86450.86820.87150.87540.89060.8494
      SSR0.94830.94880.94610.88850.93390.94740.95650.96140.96280.9625
    Tools

    Get Citation

    Copy Citation Text

    Jing Yue, Guojun Liu, Hao Fu. Color Image Quality Assessment Based on Quaternion Spectral Residual[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 29, 2018

    Accepted: Sep. 18, 2018

    Published Online: Jul. 31, 2019

    The Author Email: Jing Yue (yjing1995@163.com), Guojun Liu (liugj@nxu.edu.cn)

    DOI:10.3788/LOP56.031009

    Topics