Journal of the Chinese Ceramic Society, Volume. 51, Issue 8, 2009(2023)
Feed-to-Glass Conversion and Modeling During High-Level Liquid Waste Vitrification
[3] [3] DONALD I W. Waste Immobilization in Glass and Ceramic Based Hosts[M]. Wiley, 2010.
[4] [4] CAURANT D. Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes[M]. New York: Nova Science, 2007.
[7] [7] POKORNY R, HRMA P. Mathematical modeling of cold cap[J]. J Nucl Mater, 2012, 429(1-3): 245-256.
[8] [8] XU K, HRMA P, RICE J, et al. Melter feed reactions at T≤ 700 ℃ for nuclear waste vitrification[J]. J Am Ceram Soc, 2015, 98(10): 3105-3111.
[9] [9] POKORNY R, KRUGER A A, HRMA P. Mathematical modeling of cold cap: effect of bubbling on melting rate[J]. Ceram Silik, 2014, 58(4): 296.
[10] [10] POKORNY R, HRMA P. Model for the conversion of nuclear waste melter feed to glass[J]. J Nucl Mater, 2014, 445(1-3): 190-199.
[11] [11] POKORNY R, HILLIARD Z J, DIXON D R, et al. One-dimensional cold cap model for melters with bubblers[J]. J Am Ceram Soc, 2015, 98(10): 3112-3118.
[12] [12] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in CrucibleTests[J]. J Am Ceram Soc, 2016, 99(9): 2964-2970.
[13] [13] HRMA P, KRUGER A A, POKORNY R. Nuclear waste vitrification efficiency: cold cap reactions[J]. J Non Cryst Solids, 2012, 358(24): 3559-3562.
[14] [14] HRMA P. Conversion of nuclear waste into nuclear waste glass: experimental investigation and mathematical modeling[J]. Procedia Mater Sci, 2014, 7: 117-123.
[15] [15] UEDA N, VERNEROV M, KLOUEK J, et al. Conversion kinetics of container glass batch melting[J]. J Am Ceram Soc, 2021, 104(1): 34-44.
[16] [16] FERKL P, HRMA P, KLOUEK J, et al. Model for batch-to-glass conversion: coupling the heat transfer with conversion kinetics[J]. J Asian Ceram Soc, 2021, 9(2): 652-664.
[17] [17] FERKL P, HRMA P, ABBOUD A, et al. Conversion kinetics during melting of simulated nuclear waste glass feeds measured by dissolution of silica[J]. J Non Cryst Solids, 2022, 579: 121363.
[19] [19] RODRIGUEZ C P, PIERCE D A, SCHWEIGER M J, et al. Kinetics of cold-cap reactions for vitrification of nuclear waste glass based on simultaneous differential scanning calorimetry-thermogravimetry (DSC-TGA) and evolved gas analysis (EGA)[C]//Waste Management Symposia 2014. Phoenix, Arizona, USA, 2014: 14517.
[20] [20] PIERCE D A, HRMA P, MARCIAL J. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions[C]// ESTK J, IMON P. Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Dordrecht: Springer, 2012: 429-440.
[22] [22] HENAGER S H, HRMA P, SWEARINGEN K J, et al. Conversion of batch to molten glass, I: Volume expansion[J]. J Non-Cryst Solids, 2011, 357(3): 829-835.
[23] [23] HUJOVA M, POKORNY R, KLOUZEK J, et al. Foaming during nuclear waste melter feeds conversion to glass: Application of evolved gas analysis[J]. Int J Appl Glass Sci, 2018, 9(4): 487-498.
Get Citation
Copy Citation Text
XU Dongqing, LI Luyao, JIA Ziqiang, XU Kai. Feed-to-Glass Conversion and Modeling During High-Level Liquid Waste Vitrification[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2009
Category:
Received: Dec. 13, 2022
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: XU Dongqing (791627638@qq.com)
CSTR:32186.14.