Journal of Quantum Optics, Volume. 28, Issue 4, 296(2022)

Measurement of the Second-order Zeeman Shift in Ytterbium Lattice Clock

WANG Jin-qi1,2,3, XIONG Zhuan-xian1,2, and HE Ling-xiang1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] CAMPBELL S L, HUTSON R B, MARTI G E, et al. A fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2019, 358(12):90-94. DOI: 10.1126/science.aam5538.

    [2] [2] NICHOLSON T L, CAMPBELL S L, HUTSON R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 2015, 6(6896):1-8. DOI: 10.1038/ncomms7896.

    [3] [3] HUNTEMANN N, SANNER C, LIPPHARDT B, et al. Single-Ion Atomic Clock with 3×1018 Systematic Uncertainty[J]. Physical Review Letters, 2016, 116(6):063001.DOI: 10.1103/PhysRevLett.116.063001.

    [4] [4] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18[J]. Physical Review Letters, 2019, 123(3):033201. DOI: 10.1103/PhysRevLett.123.033201.

    [5] [5] USHIJIMA I, TAKAMOTO M, DAS M, et al. Cryogenic optical lattice clocks [J]. Nature Photonics, 2015, 9(185):185-189. DOI: 10.1038/nphoton.2015.5.

    [6] [6] CHOU C W, HUME D B, KOELEMEIJ J C J, et al. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks[J]. Physical Review Letters, 2010, 104(7):070802. DOI: 10.1103/PhysRevLett.104.070802.

    [7] [7] RIEHLE F. Towards a redefinition of the second based on optical atomic clocks [J]. Comptes Rendus Physique, 2015, 16(3):506-515. DOI: 10.1016/j.crhy.2015.03.012.

    [8] [8] BIZE S. The unit of time: Present and future directions[J]. Comptes Rendus Physique, 2019, 20(2):153-168. DOI: 10.1016/j.crhy.2019.02.002.

    [9] [9] RIEHLE F, GILL P , ARIAS F, et al. The CIPM list of recommended frequency standard values: guidelines and procedures[J]. Metrologia, 2018, 55(2):188-200. DOI: 10.1088/1681-7575/aaa302.

    [10] [10] OELKER E, HUTSON R B, KENNEDY C J, et al. Demonstration of 4.8×1017 stability at 1s for two independent optical clocks[J]. Nature Photonics, 2019, 13(714):714-719. DOI: 10.1038/s41566-019-0493-4.

    [11] [11] MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(4):87-90. DOI: 10.1038/s41586-018-0738-2.

    [12] [12] LIN Y, WANG Q, MENG F, et al. A 87Sr optical lattice clock with 2.9×10-17 uncertainty and its absolute frequency measurement[J]. Metrologia, 2021, 58(3):035010. DOI: 10.1088/1681-7575/abb530.

    [13] [13] LUO L, QIAO H, AI D, et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using International Atomic Time[J]. Metrologia, 2020, 57(6):065017. DOI: 10.1088/1681-7575/abb879.

    [14] [14] BJERHAMMAR A. On a relativistic geodesy[J]. Bulletin géodésique, 1985, 59(3):207-220. DOI: 10.1007/BF02520327.

    [15] [15] TAKANO T, TAKAMOTO M, USHIJIMA I, et al. Geopotential measurements with synchronously linked optical lattice clocks[J]. Nature Photonics, 2016, 10(10):662-666. DOI: 10.1038/nphoton.2016.159.

    [16] [16] LISDAT C, GROSCHE G, QUINTIN N, et al. A clock network for geodesy and fundamental science[J]. Nature communications, 2016, 7(1):1-7. DOI: 10.1038/ncomms12443.

    [17] [17] CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999):1630-1633. DOI: 10.1126/science.1192720.

    [18] [18] TAKAMOTO M, USHIJIMA I, OHMAE N, et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics, 2020, 14(7):411-415. DOI: 10.1038/s41566-020-0619-8.

    [19] [19] ARVANITAKI A, HUANG J, VAN TILBURG K. Searching for dilaton dark matter with atomic clocks[J]. Physical Review D, 2015, 91(1):015015. DOI: 10.1103/PhysRevD.91.015015.

    [20] [20] ROSENBAND T, HUME D B, SCHMIDT P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place[J]. Science, 2008, 319(5871):1808-1812. DOI: 10.1126/science.1154622 .

    [21] [21] LUDLOW A D, BLATT S, ZELEVINSKY T, et al. Ultracold strontium clock: Applications to the measurement of fundamental constant variations[J]. The European Physical Journal Special Topics, 2008, 163(1):9-18. DOI: 10.1140/epjst/e2008-00806-8.

    [22] [22] BLATT S, LUDLOW A D, CAMPBELL G K, et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks [J]. Physical Review Letters, 2008, 100(14):140801. DOI: 10.1103/PhysRevLett.100.140801.

    [23] [23] LIU H, ZHANG X, JIANG K L, et al. Realization of closed-loop operation of optical lattice clock based on 171Yb[J]. Chinese Physics Letters, 2017, 34(2):020601. DOI: 10.1088/0256-307x/34/2/020601.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jin-qi, XIONG Zhuan-xian, HE Ling-xiang. Measurement of the Second-order Zeeman Shift in Ytterbium Lattice Clock[J]. Journal of Quantum Optics, 2022, 28(4): 296

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: HE Ling-xiang (helx@wipm.ac.cn)

    DOI:10.3788/jqo20222804.0202

    Topics