Molecular Plant, Volume. 18, Issue 8, 1351(2025)
The RING-finger ubiquitin E3 ligase RFEL1 targets wheat NPR3 for degradation to confer broad-spectrum resistance against biotrophic fungal pathogens
[1] [1] Abu Almakarem, A.S., Heilman, K.L., Conger, H.L., Shtarkman, Y.M., and Rogers, S.O.(2012). Extraction of DNA from plant and fungus tissuesin situ. BMC Res. Notes5:266.
[2] [2] Awan, M.J.A., Rasheed, A., Saeed, N.A., and Mansoor, S.(2022).Aegilops tauschipresents a genetic roadmap for hexaploid wheat improvement. Trends Genet.38:307-309.
[3] [3] Ayliffe, M., Devilla, R., Mago, R., White, R., Talbot, M., Pryor, A., and Leung, H.(2011). Nonhost resistance of rice to rust pathogens. Mol. Plant-Microbe In.24:1143-1155.
[4] [4] Branco, L.M., Matschiner, A., Fair, J.N., Goba, A., Sampey, D.B.,
[5] [5] Ferro, P.J., Cashman, K.A., Schoepp, R.J., Tesh, R.B., Bausch, D.G., et al.(2008). Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance. Virol. J.5:74.
[6] [6] Buerstmayr, M., Steiner, B., and Buerstmayr, H.(2020). Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breed.139:429-454.
[7] [7] Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., Tang, X., and Zhou, J.M.(2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol.146:368-376.
[8] [8] Chen, J., Mohan, R., Zhang, Y., Li, M., Chen, H., Palmer, I.A., Chang, M., Qi, G., Spoel, S.H., Mengiste, T., et al.(2019). NPR1 promotes its own and target tene expression in plant defense by recruiting CDK8. Plant Physiol.181:289-304.
[9] [9] Chen, L., and Hellmann, H.(2013). Plant E3 ligases: flexible enzymes in a sessile world. Mol. Plant6:1388-1404.
[10] [10] Chen, S., Ding, Y., Tian, H., Wang, S., and Zhang, Y.(2021). WRKY54 and WRKY70 positively regulateSARD1andCBP60gexpression in plant immunity. Plant Signal. Behav.16:1932142.
[11] [11] Chen, S., Xu, K., Kong, D., Wu, L., Chen, Q., Ma, X., Ma, S., Li, T., Xie, Q., Liu, H., and Luo, L.(2022). Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1. Plant Biotechnol. J.20:1743-1755.
[12] [12] Chen, Y., Kistler, H.C., and Ma, Z.(2019).Fusarium graminearumtrichothecene mycotoxins: biosynthesis, regulation, and management. Annu. Rev. Phytopathol.57:15-39.
[13] [13] David, A., Islam, S., Tankhilevich, E., and Sternberg, M.J.E.(2022). The AlphaFold database of protein structures: a biologist's guide. J. Mol. Biol.434:167336.
[14] [14] Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., and Dubcovsky, J.(2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol.38:1274-1279.
[15] [15] Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., and Zhang, Y.(2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell173:1454-1467.
[16] [16] Dong, C., Zhang, L., Zhang, Q., Yang, Y., Li, D., Xie, Z., Cui, G., Chen, Y., Wu, L., Li, Z., et al.(2023).Tiller Number1encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat. Commun.14:836.
[17] [17] Dong, O.X., Ao, K., Xu, F., Johnson, K.C.M., Wu, Y., Li, L., Xia, S., Liu, Y., Huang, Y., Rodriguez, E., et al.(2018). Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nat. Plants4:699-710.
[18] [18] Dubcovsky, J., and Dvorak, J.(2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science316:1862-1866.
[19] [19] Figueroa, M., Hammond-Kosack, K.E., and Solomon, P.S.(2018). A review of wheat diseases-a field perspective. Mol. Plant Pathol.19:1523-1536.
[20] [20] Fister, A.S., Landherr, L., Maximova, S.N., and Guiltinan, M.J.(2018). Transient expression of CRISPR/Cas9 machinery targetingTcNPR3enhances defense response inTheobroma cacao. Front. Plant Sci.9:268.
[21] [21] Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., and Dubcovsky, J.(2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science323:1357-1360.
[22] [22] Fu, S., Wang, K., Ma, T., Liang, Y., Ma, Z., Wu, J., Xu, Y., and Zhou, X.(2022). An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell34:1822-1843.
[23] [23] Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N., and Dong, X.(2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature486:228-232.
[24] [24] Han, Y., Sun, J., Yang, J., Tan, Z., Luo, J., and Lu, D.(2017). Reconstitution of the plant ubiquitination cascade in bacteria using a synthetic biology approach. Plant J.91:766-776.
[25] [25] He, H., Zhu, S., Zhao, R., Jiang, Z., Ji, Y., Ji, J., Qiu, D., Li, H., and Bie, T.(2018).Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol. Plant11:879-882.
[26] [26] Heckmann, A., Perochon, A., and Doohan, F.M.(2024). Genome-wide analysis of salicylic acid and jasmonic acid signalling marker gene families in wheat. Plant Biol.26:691-704.
[27] [27] Hochstrasser, M.(1996). Protein degradation or regulation: Ub the judge. Cell84:813-815.
[28] [28] Kang, Y., Zhou, M., Merry, A., and Barry, K.(2020). Mechanisms of powdery mildew resistance of wheat - a review of molecular breeding. Plant Pathol.69:601-617.
[29] [29] Klymiuk, V., Yaniv, E., Huang, L., Raats, D., Fatiukha, A., Chen, S., Feng, L., Frenkel, Z., Krugman, T., Lidzbarsky, G., et al.(2018). Cloning of the wheatYr15resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun.9:3735.
[30] [30] Krasileva, K.V., Vasquez-Gross, H.A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., Simmonds, J., Ramirez-Gonzalez, R.H., Wang, X., Borrill, P., et al.(2017). Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA114:E913-E921.
[31] [31] Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., and Keller, B.(2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science323:1360-1363.
[32] [32] Kumar, S., Zavaliev, R., Wu, Q., Zhou, Y., Cheng, J., Dillard, L., Powers, J., Withers, J., Zhao, J., Guan, Z., et al.(2022). Structural basis of NPR1 in activating plant immunity. Nature605:561-566.
[33] [33] Lee, D.H., Choi, H.W., and Hwang, B.K.(2011). The pepper E3 ubiquitin ligase RING1 gene,CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol.156:2011-2025.
[34] [34] Lee, D.H., and Goldberg, A.L.(1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol.8:397-403.
[35] [35] Levy, A.A., and Feldman, M.(2022). Evolution and origin of bread wheat. Plant Cell34:2549-2567.
[36] [36] Li, B., Sun, C., Li, J., and Gao, C.(2024). Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet.25:603-622.
[37] [37] Li, C., Qiao, L., Lu, Y., Xing, G., Wang, X., Zhang, G., Qian, H., Shen, Y., Zhang, Y., Yao, W., et al.(2023). Gapless genome assembly ofPuccinia triticinaprovides insights into chromosome evolution in Pucciniales. Microbiol. Spectr.11:e0282822.
[38] [38] Li, L.S., Ying, J., Li, E., Ma, T., Li, M., Gong, L.M., Wei, G., Zhang, Y., and Li, S.(2021). Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiol.186:1645-1659.
[39] [39] Li, M., Yang, Z., and Chang, C.(2022). Susceptibility is new resistance: wheatsusceptibilitygenes and exploitation in resistance breeding. Agriculture12:1419.
[40] [40] Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al.(2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature602:455-460.
[41] [41] Li, W., Deng, Y., Ning, Y., He, Z., and Wang, G.-L.(2020). Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol.71:575-603.
[42] [42] Line, R.F., and Qayoum, A.(1992). Virulence, aggressiveness, evolution, and distribution of races of 'Puccinia striiformis' (the cause of stripe rust of wheat) in North America. Technical bulletin (USA)1788:44.
[43] [43] Ling, H.-Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., Cao, Y., Gao, Q., Zheng, S., Li, Y., et al.(2018). Genome sequence of the progenitor of wheat A subgenomeTriticum urartu. Nature557:424-428.
[44] [44] Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., Pei, X., and Ye, X.(2020a). Efficient induction of haploid plants in wheat by editing ofTaMTLusing an optimizedAgrobacterium-mediated CRISPR system. J. Exp. Bot.71:1337-1349.
[45] [45] Liu, L., Sonbol, F.M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S.Y., and Dong, X.(2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun.7:13099.
[46] [46] Liu, X., Liu, Z., Niu, X., Xu, Q., and Yang, L.(2019). Genome-wide identification and analysis of theNPR1-Like gene family in bread wheat and its relatives. Int. J. Mol. Sci.20:5974.
[47] [47] Liu, X., Zhou, Y., Du, M., Liang, X., Fan, F., Huang, G., Zou, Y., Bai, J., and Lu, D.(2022). The calcium-dependent protein kinase CPK28 is targeted by the ubiquitin ligases ATL31 and ATL6 for proteasome-mediated degradation to fine-tune immune signaling in Arabidopsis. Plant Cell34:679-697.
[48] [48] Liu, Y., Sun, T., Sun, Y., Zhang, Y., Radojii, A., Ding, Y., Tian, H., Huang, X., Lan, J., Chen, S., et al.(2020b). Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity. Plant Cell32:4002-4016.
[49] [49] Louche, A., Salcedo, S.P., and Bigot, S.(2017). Protein-protein interactions: pull-down assays. Methods Mol. Biol.1615:247-255.
[50] [50] Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and Shan, L.(2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innateimmunity. Science332:1439-1442.
[51] [51] Lu, P., Guo, L., Wang, Z., Li, B., Li, J., Li, Y., Qiu, D., Shi, W., Yang, L., Wang, N., et al.(2020). A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun.11:680.
[52] [52] Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., International Wheat Genome Sequencing Consortium, Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., and Olsen, O.A.(2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science345:1250092.
[53] [53] Moore, J.W., Herrerafoessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huertaespino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., et al.(2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet.47:1494-1498.
[54] [54] Pavan, S., Jacobsen, E., Visser, R.G.F., and Bai, Y.(2010). Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed.25:1-12.
[55] [55] Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., Lang, D., Bustos-Korts, D., Gou, N., Balfourier, F., et al.(2019). Tracing the ancestry of modern bread wheats. Nat. Genet.51:905-911.
[56] [56] Ramasamy, M., Rajkumar, M.S., Bedre, R., Irigoyen, S., Berg-Falloure, K., Kolomiets, M.V., and Mandadi, K.K.(2024). Genome editing ofNPR3confers potato resistance toCandidatusLiberibacter spp. Plant Biotechnol. J.22:2635-2637.
[57] [57] Reif, J.C., Zhang, P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M., and Melchinger, A.E.(2005). Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet.110:859-864.
[58] [58] Schfer, F., Seip, N., Maertens, B., Block, H., and Kubicek, J.(2015). Purification of GST-tagged proteins. Methods Enzymol.559:127-139.
[59] [59] Shen, Q., Hu, T., Bao, M., Cao, L., Zhang, H., Song, F., Xie, Q., and Zhou, X.(2016). Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirusencoded C1. Mol. Plant9:911-925.
[60] [60] Shu, K., and Yang, W.(2017). E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol.58:1461-1476.
[61] [61] Singh, R.P., Singh, P.K., Rutkoski, J., Hodson, D.P., He, X., Jrgensen, L.N., Hovmller, M.S., and Huerta-Espino, J.(2016). Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol.54:303-322.
[62] [62] Skelly, M.J., Furniss, J.J., Grey, H., Wong, K.W., and Spoel, S.H.(2019). Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. eLife8:e47005.
[63] [63] Spoel, S.H., and Dong, X.(2024). Salicylic acid in plant immunity and beyond. Plant Cell36:1451-1464.
[64] [64] Spoel, S.H., Mou, Z., Tada, Y., Spivey, N.W., Genschik, P., and Dong, X.(2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell137:860-872.
[65] [65] Takatsuka, C., Inoue, Y., Matsuoka, K., and Moriyasu, Y.(2004). 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol.45:265-274.
[66] [66] Truman, W., Sreekanta, S., Lu, Y., Bethke, G., Tsuda, K., Katagiri, F., and Glazebrook, J.(2013). The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity. Plant Physiol.163:1741-1751.
[67] [67] Wang, B., Meng, T., Xiao, B., Yu, T., Yue, T., Jin, Y., and Ma, P.(2023). Fighting wheat powdery mildew: from genes to fields. Theor. Appl. Genet.136:196.
[68] [68] Wang, H., Zou, S., Li, Y., Lin, F., and Tang, D.(2020). An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun.11:1353.
[69] [69] Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., et al.(2022). The geneTaWOX5overcomes genotype dependency in wheat genetic transformation. Nat. Plants8:110-117.
[70] [70] Wang, N., Tang, C., Fan, X., He, M., Gan, P., Zhang, S., Hu, Z., Wang, X., Yan, T., Shu, W., et al.(2022). Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell185:2961-2974.
[71] [71] Wang, W., Withers, J., Li, H., Zwack, P.J., Rusnac, D.-V., Shi, H., Liu, L., Yan, S., Hinds, T.R., Guttman, M., et al.(2020). Structural basis of salicylic acid perception byArabidopsisNPR proteins. Nature586:311-316.
[72] [72] Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L.(2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol.32:947-951.
[73] [73] Xing, L., Hu, P., Liu, J., Witek, K., Zhou, S., Xu, J., Zhou, W., Gao, L., Huang, Z., Zhang, R., et al.(2018).Pm21fromHaynaldia villosaencodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant11:874-878.
[74] [74] Yuan, C., Li, C., Yan, L., Jackson, A.O., Liu, Z., Han, C., Yu, J., and Li, D.(2011). A high throughputbarley stripe mosaic virusvector for virus induced gene silencing in monocots and dicots. PLoS One6:e26468.
[75] [75] Zavaliev, R., and Dong, X.(2024). NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol. Cell84:131-141.
[76] [76] Zeng, L.-R., Vega-Snchez, M.E., Zhu, T., and Wang, G.-L.(2006). Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res.16:413-426.
[77] [77] Zhang, R., Wu, Y., Qu, X., Yang, W., Wu, Q., Huang, L., Jiang, Q., Ma, J., Zhang, Y., Qi, P., et al.(2024). The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function. Nat. Commun.15:6905.
[78] [78] Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H.(2006).Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc.1:641-646.
[79] [79] Zhao, J., and Kang, Z.(2023). Fighting wheat rusts in China: a look back and into the future. Phytopathol. Res.5:6.
[80] [80] Zheng, H., Dong, L., Han, X., Jin, H., Yin, C., Han, Y., Li, B., Qin, H., Zhang, J., Shen, Q., et al.(2020). TheTuMYB46L-TuACO3module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. New Phytol.225:2526-2541.
[81] [81] Zhou, P., Zavaliev, R., Xiang, Y., and Dong, X.(2023). Seeing is believing: understanding functions of NPR1 and its paralogs in plant immunity through cellular and structural analyses. Curr. Opin. Plant Biol.73:102352.
[82] [82] Zhou, Y., Park, S.-H., and Chua, N.-H.(2023). UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol. Plant16:232-244.
[83] [83] Zou, S., Wang, H., Li, Y., Kong, Z., and Tang, D.(2018). The NB-LRR genePm60confers powdery mildew resistance in wheat. New Phytol.218:298-309.
Get Citation
Copy Citation Text
Qiao Liuhui, Zhang Kunpu, Li Jinyan, Zhang Ziming, Sun Xiao, Liu Huiyun, Li Ziyue, Ni Nannan, Ma Ximei, Zhao Jianhui, Li Guangwei, Jin Xiaohuan, Xiao Jibin, Zheng Wenming, Wang Daowen, Fu Zheng Qing, Wang Huan. The RING-finger ubiquitin E3 ligase RFEL1 targets wheat NPR3 for degradation to confer broad-spectrum resistance against biotrophic fungal pathogens[J]. Molecular Plant, 2025, 18(8): 1351
Category:
Received: Sep. 29, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: