Laser & Optoelectronics Progress, Volume. 51, Issue 2, 20001(2014)
Progress of Study on Mode Instability in High Power Fiber Amplifiers
[1] [1] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.
[2] [2] Wei Jingbo, Hu Guijun, Du Yang, et al.. High power all-optical gain-clamped fiber amplifier [J]. Acta Optica Sinica, 2013, 33(7): 0706012.
[3] [3] Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays [J]. Acta Optica Sinica, 2011, 31(9): 0900129.
[4] [4] Dai Shoujun, He Bing, Zhou Jun, et al.. Cooling technology of high-power and high-power fiber laser amplifier [J]. Chinese J Lasers, 2013, 40(5): 0502003.
[5] [5] Yan Ping, Xiao Qirong, Fu Chen, et al.. 1.6 kW Yb-doped all-fiber laser[J]. Chinese J Lasers, 2012, 39(4): 0416001.
[6] [6] Li Jie, Chen Zilun, Zhou Hang, et al.. Status and development of pumping technology for high power fiber lasers [J]. Laser & Optoelectronics Progress, 2012, 49(2): 020003.
[7] [7] C Jauregui, T Eidam, H-J Otto, et al.. Physical origin of mode instabilities in high-power fiber laser systems [J]. Opt Express, 2012, 20(12): 12912-12925.
[8] [8] T Eidam, C Wirth, C Jauregui, et al.. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Opt Express, 2011, 19(14): 13218-13224.
[9] [9] D Engin, W Lu, H Verdun, et al.. High power modal instability measurements of very large mode area (VLMA) step index fibers [C]. SPIE, 2013, 8733: 87330J.
[10] [10] T Eidam, S Hanf, E Seise, et al.. Femtosecond ber CPA system emitting 830 W average output power [J]. Opt Lett, 2010, 35(2): 94-96.
[11] [11] F Stutzki, H-J Otto, F Jansen, et al.. High-speed modal decomposition of modeinstabilities in high-power fiber lasers [J]. Opt Lett, 2011, 36(23): 4572-4574.
[12] [12] H-J Otto, C Jauregui, F Stutzki. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector [J]. Opt Express, 2013, 21(14): 17285-17298.
[13] [13] M Laurila, M M J rgensen, K R Hansen, et al.. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability [J]. Opt Express, 2012, 20(5): 5742-5753.
[14] [14] F Jansen, F Stutzki, H J Otto, et al.. Thermally induced waveguide changes in active fibers [J]. Opt Express, 2012, 20(4): 3997-4008.
[15] [15] B Ward, C Robin, I Dajani. Origin of thermal modal instabilities in large mode area fiber amplifiers [J]. Opt Express, 2012, 20(10): 11407-11422.
[16] [16] H-J Otto, F Stutzki, F Jansen, et al.. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers [J]. Opt Express, 2012, 20(14): 15710-15722.
[17] [17] N Haarlammert, O de Vries, A Liem, et al.. Build up and decay of mode instability in a high power fiber amplifier [J]. Opt Express, 2012, 20(12): 13274-13283.
[18] [18] C Jauregui, T Eidam, J Limpert, et al.. The impact of modal interference on the beam quality of high-power fiber amplifiers [J]. Opt Express, 2011, 19(4): 3258-3271.
[19] [19] A V Smith, J J Smith. Mode instability in high power fiber amplifiers [J]. Opt Express, 2011, 19(11): 10180-10192.
[20] [20] A V Smith, Jesse J Smith. Steady-periodic method for modelingmode instability in ber ampli ers [J]. Opt Express, 2013, 21(3): 2606-2623.
[21] [21] A V Smith, J J Smith. In uence of pump and seed modulationon the mode instability thresholds of ber ampli ers [J]. Opt Express, 2012, 20(22): 24545-24558.
[22] [22] K R Hansen, T T Alkeskjold, J Broeng, et al.. Thermally induced mode coupling in rare-earthdoped fiber amplifiers [J]. Opt Lett, 2012, 37(12): 2382-2384.
[23] [23] K R Hansen, T T Alkeskjold, J Broeng, et al.. Theoretical analysis of mode instabilityin high-power ber ampli ers [J]. Opt Express, 2013, 21(2): 1944-1971.
[24] [24] L Dong. Stimulated thermal Rayleigh scattering in optical fibers [J]. Opt Express, 2013, 21(3): 2642-2656.
[25] [25] I-Ning Hu, C Zhu, C Zhang, et al.. Analytical time-dependenttheory of thermally-induced modal instabilities in high power ber amplifiers [C]. SPIE, 2013, 8601: 860109.
[26] [26] C Jauregui, H-J Ottoa, F Jansena, et al.. Mode instabilities: physical origin and mitigation strategies [C]. SPIE, 2013, 8601:86010F.
[27] [27] C Jauregui, H-J Otto, F Stutzki, et al.. Passive mitigation strategies for mode instabilities in high-power fiber laser systems [J]. Opt Express, 2013, 21(16): 19375-19386.
[28] [28] B Ward. Modeling of transient modal instability in fiber amplifiers [J]. Opt Express, 2013, 21(10): 12053-12067.
[29] [29] S Naderi, I Dajani, T Madden, et al.. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations [J]. Opt Express, 2013, 21(13): 16111-16129.
[30] [30] C Wirth, T Schreiber, M Rekas, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier [C]. SPIE, 2010, 7580: 75801H.
[31] [31] O Schmidt, M Rekas, C Wirth, et al.. High power narrow-band fiber-based ASE source [J]. Opt Express, 2011, 19(5): 4421-4427.
[32] [32] T Eidam, S H drich, F Jansen, et al.. Preferential gain photonic-crystal fiber for mode stabilization at high average powers [J]. Opt Express, 2011, 19(9): 8656-8661.
[33] [33] F Stutzki, F Jansen, T Eidam, et al.. High average power large-pitch fiber amplifier with robust single-mode operation [J]. Opt Lett, 2011, 36(5): 689-691.
[34] [34] M M J rgensen, M Laurila, D Noordegraaf, et al.. Thermal-recovery of modal instability in rod fiber amplifiers [C]. SPIE, 2013, 8601: 86010U.
[35] [35] C Wirth, O Schmidt, I Tsybin, et al.. High average power spectral beam combiningof four fiber amplifiers to 8.2 kW [J]. Opt Lett, 2011, 36(16): 3118-3120.
[36] [36] C Jocher, T Eidama, S H dricha, et al.. 23 fs pulses at 250 W of average power from a FCPA with solid core nonlinear compression [C]. SPIE, 2013, 8601: 86011F.
[37] [37] M Karow, H Tünnermann, J Neumann, et al.. Beam quality degradation of a single-frequency Yb-dopedphotonic crystal fiberamplifier with low mode instability threshold power [J]. Opt Lett, 2012, 37(20): 4242-4244.
[38] [38] M Laurila, J Saby, T T Alkeskjold, et al.. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser [J]. Opt Express, 2011, 19 (11): 10824-10833.
[39] [39] T J Wagner. Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division [C]. SPIE, 2012, 8237: 823718.
[40] [40] Tao Rumao, Wang Xiaolin, Xiao Hu, et al.. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers [J]. Acta Optica Sinica, 2014, 34(1): 0114002.
[41] [41] C Robin, I Dajani, C Zeringue, et al.. Gain-tailored SBS suppressing photonic crystal fibers for high powerapplications [C]. SPIE, 2012, 8237: 82371D.
Get Citation
Copy Citation Text
Tao Rumao, Zhou Pu, Xiao Hu, Wang Xiaolin, Si Lei, Liu Zejin. Progress of Study on Mode Instability in High Power Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20001
Category: Reviews
Received: Sep. 22, 2013
Accepted: --
Published Online: Feb. 18, 2014
The Author Email: Tao Rumao (taorumao@sohu.com)