Optoelectronics Letters, Volume. 21, Issue 3, 172(2025)
Design and testing research of LiDAR for detecting atmospheric turbulence
[1] [1] LV Y M, GUO J P, LI J, et al. Spatiotemporal characteristics of atmospheric turbulence over China estimated using operational high-resolution soundings[J]. Environmental research letters, 2021, 16(5): 054050.
[2] [2] FAHEY T, ISLAM M, GARDI A. Laser beam atmospheric propagation modelling for aerospace LIDAR applications[J]. Atmosphere, 2021, 12(7): 918.
[3] [3] LI M, ZHANG P X, HAN J W. Methods of atmospheric coherence length measurement[J]. Applied sciences, 2022, 12(6): 2980.
[4] [4] XIA H. Turbulence detection in the atmospheric boundary layer using coherent Doppler wind Lidar and microwave radiometer[J]. Remote sensing, 2022, 14(12): 2951.
[5] [5] GORDON S, BROOKER G. Using Schlieren imaging and a radar acoustic sounding system for the detection of close-in air turbulence[J]. Sensors, 2023, 23(19): 8255.
[6] [6] ZHANG J, GUO J P, ZHANG S, et al. Inertia-gravity wave energy and instability drive turbulence: evidence from a near-global high-resolution radiosonde dataset[J]. Climate dynamics, 2022, 58(11-12): 3.
[7] [7] AKANKSHA R, NARENDRA S, JAYDEEP S, et al. Investigation of atmospheric turbulence and scale lengths using radiosonde measurements of GVAX-campaign over central Himalayan region[J]. Journal of atmospheric and solar-terrestrial physics, 2022, 235: 105895.
[8] [8] ZHANG H, ZHU L, SUN G, et al. A multi-model ensemble pattern method to estimate the refractive index structure parameter profile and integrated astronomical parameters in the atmosphere[J]. Remote sensing, 2023, 15(6): 1584.
[9] [9] KORNILOV V, SAFONOV B. Wave propagation effect on differential image motion monitor measurements[J]. Monthly notices of the royal astronomical society, 2019, 488: 1273-1281.
[10] [10] ARISTIDI E, ZIAD A, JULIEN C, et al. A generalized differential image motion monitor[J]. Monthly notices of the royal astronomical society, 2019, 486(1): 915-925.
[11] [11] GIMMESTAD G. Development of a Lidar technique for profiling optical turbulence[J]. Optical engineering, 2012, 51: 1713.
[12] [12] ZHOU Y, ZHOU A, SUN D, et al. Development of differential image motion LiDAR for profiling optical turbulence[J]. Infrared and laser engineering, 2016, 45(11): 5.
[13] [13] CHENG Z, JING X, HE F, et al. Denoising differential column image motion Lidar signal using singular value decomposition[C]//Applied Optics and Photonics China, 2017.
[14] [14] YANG H, QIU D Y, FANG Z Y, et al. LiDAR technology and experimental research for comprehensive measurement of atmospheric transmittance, turbulence, and wind[J]. Journal of applied remote sensing, 2023, 14(12): 012002.
[15] [15] PANG Y, ZHANG K, BAI Z, et al. Design study of a large-angle optical scanning system for MEMS LIDAR[J]. Applied sciences, 2022, 12(3): 1283.
[16] [16] LUAN C L, LI Y C, GUO H C. Range-gated LIDAR utilizing a LiNbO3 (LN) crystal as an optical switch[J]. Photonics, 2023, 10(6): 677.
[17] [17] HUANG F, QIU S P, LIU H, et al. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based on range-gated detection[J]. Optics express, 2023, 31(16): 25527-25544.
Get Citation
Copy Citation Text
QIU Duoyang, LI Xianyang, YANG Hao, ZHU Xiaomeng, FANG Zhiyuan, XU Xiang. Design and testing research of LiDAR for detecting atmospheric turbulence[J]. Optoelectronics Letters, 2025, 21(3): 172
Received: Jan. 29, 2024
Accepted: Jan. 24, 2025
Published Online: Jan. 24, 2025
The Author Email: