Remote Sensing Technology and Application, Volume. 40, Issue 4, 1036(2025)
Spatial and Temporal Characterization of Anthropogenic CO2 Emissions in China by Integrating Multi-source Remote Sensing Data
[1] [1] LIU L Y, CHEN L F, LIU Y,et al. Satellite remote sensing for global stocktaking: Methods, progress and perspectives[J]. National Remote Sensing Bulletin, 2022, 26(2): 243-267. DOI: 10.11834/jrs.20221806
[2] [2] WANG J, FENG L, PALMER P I,et al. Reply to: The size of the land carbon sink in China[J]. Nature, 2022, 603(7901): E10-E12. DOI: 10.1038/s41586-021-04256-x
[5] [5] ODA T, MAKSYUTOV S, ANDRES R J. The open-source data inventory for anthropogenic carbon dioxide (CO2), version 2016 (ODIAC2016): A global, monthly fossil-fuel CO2 gridded emission data product for tracer transport simulations and surface flux inversions[J]. Earth System Science Data, 2018, 10(1): 87-107. DOI: 10.5194/essd-10-87-2018
[6] [6] JANSSENS-MAENHOUT G, CRIPPA M, GUIZZARDI D,et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012[J]. Earth System Science Data, 2019, 11(3): 959-1002. DOI: 10.5194/essd-11-959-2019
[7] [7] CAI B F, LIANG S, ZHOU J,et al. China High Resolution Emission Database(CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data[J]. Resources, Conservation and Recycling, 2018, 129: 232-239. DOI: 10.1016/j.resconrec.2017.10.036
[10] [10] WAN MANSOR W N, ABDULLAH S, CHE Wan Othman, Che Wan Mohd Noor,et al. Data on greenhouse gases emission of fuels in power plants in Malaysia during the year of 1990-2017[J]. Data in Brief, 2020, 30: 105440. DOI: 10.1016/j.dib.2020.105440
[11] [11] HAN P F, ZENG N, ODA T,et al. Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories[J]. Atmospheric Chemistry and Physics, 2020, 20(19): 11371-11385. DOI: 10.5194/acp-20-11371-2020
[12] [12] ANDRES R J, BODEN T A, HIGDON D M. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14979-14995. DOI: 10.5194/acp-16-14979-2016
[14] [14] AHN D Y, GOLDBERG D L, COOMBES T,et al. CO2 emissions from C40 cities: Citywide emission inventories and comparisons with global gridded emission datasets[J]. Environmental Research Letters, 2023, 18(3): 034032. DOI: 10.1088/1748-9326/acbb91
[15] [15] SOLAZZO E, CRIPPA M, GUIZZARDI D,et al. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5655-5683. DOI: 10.5194/acp-21-5655-2021
[17] [17] LIANG A L, GONG W, HAN G,et al. Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON[J]. Remote Sensing, 2017, 9(10): 1033. DOI: 10.3390/rs9101033
[25] [25] ODA T, MAKSYUTOV S. A very high-resolution (1 km× 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011, 11(2): 543-556. DOI: 10.5194/acp-11-543-2011
[26] [26] CHEN Z Q, YU B L, YANG C S,et al. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 2021, 13(3): 889-906. DOI: 10.5194/essd-13-889-2021
[27] [27] ZHU S Y, GUAN H D, MILLINGTON A C,et al. Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area: A case study in Shanghai, China[J]. International Journal of Remote Sensing, 2013, 34(5): 1707-1723. DOI: 10.1080/01431161.2012.725957
[28] [28] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI: 10.1023/A: 1010933404324
[29] [29] BINDHU V M, NARASIMHAN B, SUDHEER K P. Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration[J]. Remote Sensing of Environment, 2013, 135: 118-129. DOI: 10.1016/j.rse.2013.03.023
[31] [31] LI S Y, WANG S X, WU Q R,et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021[J]. Earth System Science Data, 2023, 15(6): 2279-2294. DOI: 10.5194/essd-15-2279-2023
Get Citation
Copy Citation Text
XU Shan, ZHOU Xiya, GUO Zixiao. Spatial and Temporal Characterization of Anthropogenic CO2 Emissions in China by Integrating Multi-source Remote Sensing Data[J]. Remote Sensing Technology and Application, 2025, 40(4): 1036
Received: Sep. 25, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: