Chinese Optics Letters, Volume. 19, Issue 7, 071405(2021)

Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited] On the Cover

Bo Guo*, Xinyu Guo, Lige Tang, Wenlei Yang**, Qiumei Chen, and Zhongyao Ren
Author Affiliations
  • Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
  • show less
    References(55)

    [1] X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, F. Q. Wang. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 3, 2718(2013).

    [2] Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, Z. J. Fang. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter. IEEE Photon. J., 2, 571(2010).

    [3] Z. Y. Yan, X. H. Li, Y. L. Tang, P. P. Shum, X. Yu, Y. Zhang, Q. J. Wang. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express, 23, 4369(2015).

    [4] Y. G. Han, T. V. A. Tran, S. B. Lee. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber. Opt. Lett., 31, 697(2006).

    [5] Y. J. Yuan, Y. Yao, M. Yi, B. Guo, J. J. Tian. Multiwavelength fiber laser employing a nonlinear Brillouin optical loop mirror: experimental and numerical studies. Opt. Express, 22, 15352(2014).

    [6] J. Yao, J. P. Yao, Z. C. Deng. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise. Opt. Express, 12, 4529(2004).

    [7] Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, Y. X. Xia. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter. IEEE Photon. Technol. Lett., 16, 2015(2004).

    [8] A. P. Luo, Z. C. Luo, W. C. Xu. Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach–Zehnder interferometer. Opt. Lett., 34, 2135(2009).

    [9] J. B. Schlager, S. Kawanishi, M. Saruwatari. Dual-wavelength pulse generation using mode-locked erbium-doped fibre ring laser. Electron. Lett., 27, 2072(1991).

    [10] B. Bakhshi, P. A. Andrekson. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser. IEEE Photon. Technol. Lett, 11, 1387(1999).

    [11] V. J. Matsas, T. P. Newson, D. J. Richardson, D. N. Payne. Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett., 28, 1391(1992).

    [12] D. U. Noske, M. J. Guy, K. Rottwitt, R. Kashyap, J. R. Taylor. Dual-wavelength operation of a passively mode-locked “figure-of-eight” ytterbium-erbium fibre soliton laser. Opt. Commun., 108, 297(1994).

    [13] H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser. Opt. Express, 17, 12692(2009).

    [14] X. H. Li, K. Wu, Z. P. Sun, B. Meng, Y. G. Wang, Y. S. Wang, X. C. Yu, X. Yu, Y. Zhang, P. Shum, Q. J. Wang. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers. Sci. Rep., 6, 25266(2016).

    [15] Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, C. C. Ye. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Phys. Lett., 9, 229(2012).

    [16] T. Zhu, Y. J. Rao, J. L. Wang. Characteristics of novel ultra-long-period fiber gratings fabricated by high-frequency CO2 laser pulses. Opt. Commun., 277, 84(2007).

    [17] X. W. Shu, B. Gwandu, L. R. Zhang, I. Bennion. Ultra-long-period fiber gratings. Opt. Commun., 4, 386(2001).

    [18] X. W. Shu, L. Zhang, I. Bennion. Fabrication and characterisation of ultra-long-period fibre gratings. Opt. Commun., 203, 277(2002).

    [19] T. Zhu, Y. Song, Y. J. Rao, Y. Zhu. Highly sensitive optical refractometer based on edge-written ultra-long-period fiber grating formed by periodic grooves. IEEE Sensors J., 9, 678(2009).

    [20] E. Perez, H. M. Chan, I. V. Tomov, H. P. Lee. Fabrication of ultra-compact long-period fiber grating through a differentially scanned CO2 laser. Proc. SPIE, 31, 6351(2006).

    [21] Y. Liu, S. L. Qu. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index. Optik, 124, 1303(2013).

    [22] S. P. Ugale, V. Mishra. Formation and characterization of non-uniform long and ultralong period reversible optical fiber gratings. Optik, 125, 3822(2014).

    [23] T. Almeida, R. Oliveira, P. André, A. Rocha, M. Facão, R. Nogueira. Automated technique to inscribe reproducible long-period gratings using a CO2 laser splicer. Opt. Lett., 42, 1994(2017).

    [24] Y. Song, T. Zhu, Y. J. Rao, Y. W. Zhao. A humidity sensor based on ultra-long-period fiber gratings with asymmetric refractive index modulation. Chin. J. Lasers, 36, 2042(2009).

    [25] B. Zou, K. S. Chang. Phase retrieval from transmission spectrum for long-period fiber gratings. J. Lightwave Technol., 31, 375(2013).

    [26] L. Fang, H. Z. Jia. Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings. Opt. Express, 22, 11488(2014).

    [27] S. M. Israelsen, K. Rottwitt. Broadband higher order mode conversion using chirped microbend long period gratings. Opt. Express, 24, 23969(2016).

    [28] G. Masri, S. Shahal, A. Klein, H. Duadi, M. Fridman. Polarization dependence of asymmetric off-resonance long period fiber gratings. Opt. Express, 24, 29843(2016).

    [29] H. Zhao, P. Wang, C. L. Zhu, R. Subramanian, H. P. Li. Analysis for the phase-diffusion effect in a phase-shifted helical long-period fiber grating and its pre-compensation. Opt. Express, 25, 19085(2017).

    [30] W. Ni, P. Lu, C. Luo, X. Fu, D. Liu, J. Zhang. Simultaneous measurement of curvature and temperature based on thin core ultra-long-period fiber grating, 1(2016).

    [31] T. Zhu, Y. J. Rao, Q. J. Mo. Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating. IEEE Photon. Technol. Lett, 17, 744(2005).

    [32] B. P. Shang, Y. P. Miao, H. M. Zhang, C. W. Fei, L. J. Zu. Ultralong-period microfiber grating for simultaneous measurement of displacement and temperature. IEEE Photon. Technol. Lett., 31, 1763(2019).

    [33] S. Zhang, S. F. Deng, T. Geng, C. T. Sun, L. B. Yuan. A miniature ultra-long period fiber grating for simultaneous measurement of axial strain and temperature. Opt. Laser Technol., 126, 106121(2020).

    [34] W. J. Ni, P. Lu, X. Fu, S. Wang, Y. Sun, D. M. Liu, J. S. Zhang. Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultra-long period fiber grating. IEEE Photon. J., 9, 7100909(2017).

    [35] S. S. Zhang, C. Q. Fang, C. Zhang, J. Shi, J. Q. Yao. A compact ultra-long period fiber grating based on cascading up-tapers. IEEE Sens. J., 20, 8552(2020).

    [36] R. Slavík, Y. Park, M. Kulishov, J. Azaña. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt. Lett., 34, 3116(2009).

    [37] C. G. Tong, X. D. Chen, Y. Zhou, J. He, W. L. Yang, T. Geng, W. M. Sun, L. B. Yuan. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature. Opt. Rev., 25, 295(2018).

    [38] Y. H. Zhao, Y. Q. Liu, C. Y. Zhang, L. Zhang, G. J. Zheng, C. B. Mou, J. X. Wen, T. Y. Wang. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. Opt. Lett., 42, 4708(2017).

    [39] T. Erdogan. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A, 14, 1760(1997).

    [40] R. Slavík, M. Kulishov, Y. Park, J. Azaña. Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics. Opt. Lett., 34, 1045(2009).

    [41] C. L. Zhu, H. Zhao, P. Wang, R. Subramanian, H. P. Li. Enhanced flat-top band-rejection filter based on reflective helical long-period fiber gratings. IEEE Photon. Technol. Lett, 29, 964(2017).

    [42] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter. IEEE Photon. Technol. Lett., 9, 1343(1997).

    [43] Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, Q. Zhan. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating. Appl. Phys. Lett., 110, 161104(2017).

    [44] Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, Y. Chung. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett, 15, 383(2003).

    [45] M. Yan, S. Y. Luo, L. Zhan, Z. M. Zhang, Y. X. Xia. Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings. Opt. Express, 15, 3685(2007).

    [46] X. S. Liu, L. Zhan, S. Y. Luo, Y. X. Wang, Q. S. Shen. Individually switchable and widely tunable multiwavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings. J. Lightwave Technol., 29, 3319(2011).

    [47] K. Intrachat, J. N. Kutz. Theory and simulation of passive mode-locking dynamics using a long-period fiber grating. IEEE J. Quantum. Electron., 39, 1572(2003).

    [48] A. S. Karar, T. Smy, A. L. Steele. Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating. IEEE J. Quantum. Electron., 44, 254(2008).

    [49] T. Geng, J. Li, W. L. Yang, M. W. An, H. Y. Zeng, F. Yang, Z. J. Cui, L. B. Yuan. Simultaneous measurement of temperature and strain using a long-period fiber grating with a micro-taper. Opt. Rev., 23, 657(2016).

    [50] B. Guo, Q. L. Xiao, S. H. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [51] B. K. Garside, T. K. Lim. Laser mode locking using saturable absorbers. J. Appl. Phys., 44, 2335(1973).

    [52] W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, D. Y. Tang. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser. J. Opt. Soc. Am. B, 17, 28(2000).

    [53] C. Baker, M. Rochette. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt. Express, 18, 12391(2010).

    [54] H. N. Zhang, P. F. Ma, M. X. Zhu, W. F. Zhang, G. M. Wang, S. G. Fu. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 9, 2557(2020).

    [55] G. P. Agrawal. Nonlinear Fiber Optics(2019).

    CLP Journals

    [1] Shengfa Fan, Yihong Qi, Yueping Niu, Shangqing Gong, "Nonreciprocal transmission of multi-band optical signals in thermal atomic systems," Chin. Opt. Lett. 20, 012701 (2022)

    [2] Yang Gao, Jiali Liao, Jun Xu, Zhanrong Zhou, "Sidelobe suppression for coherent beam combining with laser beams placed along a Fermat spiral," Chin. Opt. Lett. 20, 021405 (2022)

    [3] Linghao Kong, Hongwei Chu, Na Li, Han Pan, Shengzhi Zhao, Dechun Li, "VOx/NaVO3 nanocomposite as a novel saturable absorber for passive Q-switching operation," Chin. Opt. Lett. 20, 051601 (2022)

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Bo Guo, Xinyu Guo, Lige Tang, Wenlei Yang, Qiumei Chen, Zhongyao Ren, "Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited]," Chin. Opt. Lett. 19, 071405 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Nov. 17, 2020

    Accepted: Jan. 5, 2021

    Posted: Jan. 6, 2021

    Published Online: Apr. 20, 2021

    The Author Email: Bo Guo (guobo512@163.com), Wenlei Yang (ywl-_-@hotmail.com)

    DOI:10.3788/COL202119.071405

    Topics