Acta Photonica Sinica, Volume. 53, Issue 5, 0553104(2024)

Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)

Xiaotian CHENG1, Lingfang WANG1, Jiawang YU1, Shuning DING1, Zhibo NI1, Hongbin WANG1, Xiaoqing ZHOU2, and Chaoyuan JIN1、*
Author Affiliations
  • 1College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China
  • 2School of Science,Westlake University,Hangzhou 310030,China
  • show less
    References(143)

    [1] LOUDON R. The quantum theory of light[M]. OUP Oxford(2000).

    [2] PURCELL E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681-681(1946).

    [3] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [4] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [5] NODA S, FUJITA M, ASANO T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 1, 449-458(2007).

    [6] LODAHL P, FLORIS VAN DRIEL A, NIKOLAEV I S et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 430, 654-657(2004).

    [7] HUGALL J T, SINGH A, VAN HULST N F. Plasmonic cavity coupling[J]. ACS Photonics, 5, 43-53(2018).

    [8] HAROCHE S, KLEPPNER D. Cavity quantum electrodynamics[J]. Physics Today, 42, 24-30(1989).

    [9] CIRAC J I, ZOLLER P, KIMBLE H J et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 78, 3221-3224(1997).

    [10] JOHNE R, SCHUTJENS R, FATTAH POOR S et al. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system[J]. Physical Review A, 91, 063807(2015).

    [11] JIN C Y, JOHNE R, SWINKELS M Y et al. Ultrafast non-local control of spontaneous emission[J]. Nature Nanotechnology, 9, 886-890(2014).

    [12] CHEN S, FRANCIS H, HHO C et al. Control of quality factor in laterally coupled vertical cavities[J]. IET Optoelectronics, 14, 100-103(2020).

    [13] LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 87, 347-400(2015).

    [14] JEONG K Y, HWANG M S, KIM J et al. Recent progress in nanolaser technology[J]. Advanced Materials, 32, 2001996(2020).

    [15] EINSTEIN A. Zur quantentheorie der strahlung[M]. Hirzel Leipzig(1917).

    [16] FOX A M[M]. Quantum optics: an introduction(2006).

    [17] NOVOTNY L, HECHT B[M]. Principles of nano-optics(2012).

    [18] BARNES W L, HORSLEY S A R, VOS W L. Classical antennas, quantum emitters, and densities of optical states[J]. Journal of Optics, 22, 073501(2020).

    [19] KAVOKIN A V, BAUMBERG J J, MALPUECH G et al[M]. Microcavities(2017).

    [20] ROMEIRA B, FIORE A. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 54, 1-12(2018).

    [21] JOANNOPOULOS J D, VILLENEUVE P R, FAN S. Photonic crystals: putting a new twist on light[J]. Nature, 386, 143-149(1997).

    [22] CLAUDON J, BLEUSE J, MALIK N S et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 4, 174-177(2010).

    [23] WEI Y, LIU S, LI X et al. Tailoring solid-state single-photon sources with stimulated emissions[J]. Nature Nanotechnology, 17, 470-476(2022).

    [24] WANG H, HE Y M, CHUNG T H et al. Towards optimal single-photon sources from polarized microcavities[J]. Nature Photonics, 13, 770-775(2019).

    [25] TOMM N, JAVADI A, ANTONIADIS N O et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 16, 399-403(2021).

    [26] LIU X, GALFSKY T, SUN Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).

    [27] SRINIVASAN K, PAINTER O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system[J]. Nature, 450, 862-865(2007).

    [28] ATES S, AGHA I, GULINATTI A et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation[J]. Scientific Reports, 3, 1397(2013).

    [29] DUSANOWSKI Ł, KÖCK D, SHIN E et al. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators[J]. Nano Letters, 20, 6357-6363(2020).

    [30] BROOKS A, CHU X L, LIU Z et al. Integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics[J]. Nano Letters, 21, 8707-8714(2021).

    [31] KIPPENBERG T J, TCHEBOTAREVA A L, KALKMAN J et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity[J]. Physical Review Letters, 103, 027406(2009).

    [32] JAVERZAC-GALY C, KUMAR A, SCHILLING R D et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators[J]. Nano Letters, 18, 3138-3146(2018).

    [33] DOELEMAN H M, DIELEMAN C D, MENNES C et al. Observation of cooperative Purcell enhancements in antenna-cavity hybrids[J]. ACS Nano, 14, 12027-12036(2020).

    [34] ARTEMYEV M V, WOGGON U, WANNEMACHER R et al. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission[J]. Nano Letters, 1, 309-314(2001).

    [35] LUO Y, AHMADI E D, SHAYAN K et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities[J]. Nature Communications, 8, 1413(2017).

    [36] SINGH A, DE ROQUE P M, CALBRIS G et al. Nanoscale mapping and control of antenna-coupling strength for bright single photon sources[J]. Nano Letters, 18, 2538-2544(2018).

    [37] HOANG T B, AKSELROD G M, ARGYROPOULOS C et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 6, 7788(2015).

    [38] CHIKKARADDY R, DE NIJS B, BENZ F et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016).

    [39] HENNESSY K, BADOLATO A, WINGER M et al. Quantum nature of a strongly coupled single quantum dot-cavity system[J]. Nature, 445, 896-899(2007).

    [40] PHILLIPS C L, BRASH A J, GODSLAND M et al. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity[J]. Scientific Reports, 14, 4450(2024).

    [41] OHTA R, OTA Y, NOMURA M et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot[J]. Applied Physics Letters, 98, 173104(2011).

    [42] OTA Y, IWAMOTO S, KUMAGAI N et al. Spontaneous two-photon emission from a single quantum dot[J]. Physical Review Letters, 107, 233602(2011).

    [43] LIU F, BRASH A J, O'HARA J et al. High Purcell factor generation of indistinguishable on-chip single photons[J]. Nature Nanotechnology, 13, 835-840(2018).

    [44] RAO M, SHI F, RAO Z et al. Single photon emitter deterministically coupled to a topological corner state[J]. Light: Science & Applications, 13, 19(2024).

    [45] KURUMA K, OTA Y, KAKUDA M et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots[J]. APL Photonics, 5, 046106(2020).

    [46] GONG Y, MAKAROVA M, YERCI S et al. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities[J]. Optics Express, 18, 13863-13873(2010).

    [47] SUMIKURA H, KURAMOCHI E, TANIYAMA H et al. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity[J]. Scientific Reports, 4, 5040(2014).

    [48] DIBOS A M, SOLOMON M T, SULLIVAN S E et al. Purcell Enhancement of Erbium Ions in TiO2 on Silicon Nanocavities[J]. Nano Letters, 22, 6530-6536(2022).

    [49] SIPAHIGIL A, EVANS R E, SUKACHEV D D et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 354, 847-850(2016).

    [50] ASANO T, OCHI Y, TAKAHASHI Y et al. Photonic crystal nanocavity with a Q factor exceeding eleven million[J]. Optics Express, 25, 1769-1777(2017).

    [51] FLAGG E B, MULLER A, ROBERTSON J W et al. Resonantly driven coherent oscillations in a solid-state quantum emitter[J]. Nature Physics, 5, 203-207(2009).

    [52] ENGLUND D, FARAON A, FUSHMAN I et al. Controlling cavity reflectivity with a single quantum dot[J]. Nature, 450, 857-861(2007).

    [53] RAKHER M T, STOLTZ N G, COLDREN L A et al. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots[J]. Physical Review Letters, 102, 097403(2009).

    [54] QIAN Z, SHAN L, ZHANG X et al. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX, 2, 21(2021).

    [55] DING X, HE Y, DUAN Z C et al. On-demand single photons with high extraction eifficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 116, 020401(2016).

    [56] SATTLER T, PEINKE E, BLEUSE J et al. Cavity switching: a novel resource for solid-state quantum optics[C](2017).

    [57] PEINKE E, SATTLER T, TORELLY G M et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers[J]. Light: Science & Applications, 10, 215(2021).

    [58] KINKHABWALA A, YU Z, FAN S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [59] WANG Q, STOBBE S, LODAHL P. Mapping the local density of optical states of a photonic crystal with single quantum dots[J]. Physical Review Letters, 107, 167404(2011).

    [60] YAO P, MANGA RAO V S C, HUGHES S. On-chip single photon sources using planar photonic crystals and single quantum dots[J]. Laser & Photonics Reviews, 4, 499-516(2010).

    [61] UPPU R, PEDERSEN F T, WANG Y et al. Scalable integrated single-photon source[J]. Science Advances, 6, eabc8268(2020).

    [62] COUTEAU C, BARZ S, DURT T et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 5, 326-338(2023).

    [63] LI Hancong, CHEN Xiqing, YANG Jingnan et al. Luminescence and applications of single quantum dots[J]. Chinese Journal of Luminescence, 44, 1251-1272(2023).

    [64] PENG K, WU S, XIE X et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting[J]. Physical Review Applied, 11, 024015(2019).

    [65] MILLER D A B, CHEMLA D S, DAMEN T C et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect[J]. Physical Review Letters, 53, 2173-2176(1984).

    [66] PENG K, WU S, TANG J et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field[J]. Physical Review Applied, 8, 064018(2017).

    [67] SöLLNER I, MAHMOODIAN S, HANSEN S L et al. Deterministic photon-emitter coupling in chiral photonic circuits[J]. Nature Nanotechnology, 10, 775-778(2015).

    [68] MIDOLO L, PAGLIANO F, HOANG T B et al. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity[J]. Applied Physics Letters, 101, 091106(2012).

    [69] PAGLIANO F, CHO Y, XIA T et al. Dynamically controlling the emission of single excitons in photonic crystal cavities[J]. Nature Communications, 5, 5786(2014).

    [70] PETRUZZELLA M, XIA T, PAGLIANO F et al. Fully tuneable, Purcell-enhanced solid-state quantum emitters[J]. Applied Physics Letters, 107, 141109(2015).

    [71] PETRUZZELLA M, PAGLIANO F M, ZOBENICA Ž et al. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities[J]. Applied Physics Letters, 111, 251101(2017).

    [72] SIAMPOUR H, O'ROURKE C, BRASH A J et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide[J]. npj Quantum Information, 9, 15(2023).

    [73] IMAMOG A, AWSCHALOM D D, BURKARD G et al. Quantum information processing using quantum dot spins and cavity QED[J]. Physical Review Letters, 83, 4204(1999).

    [74] BIOLATTI E, IOTTI R C, ZANARDI P et al. Quantum information processing with semiconductor macroatoms[J]. Physical Review Letters, 85, 5647(2000).

    [75] BAYER M, GUTBROD T, REITHMAIER J P et al. Optical modes in photonic molecules[J]. Physical Review Letters, 81, 2582-2585(1998).

    [76] CLAUDE C T. Manipulating atoms with photons[J]. Physica Scripta, 1998, 33(1998).

    [77] TIAN F, SUMIKURA H, KURAMOCHI E et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems[J]. Optica, 9, 309-316(2022).

    [78] BEKELE D, YU Y, YVIND K et al. In-plane photonic crystal devices using Fano resonances[J]. Laser & Photonics Reviews, 13, 1900054(2019).

    [79] NOZAKI K, SHINYA A, MATSUO S et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 21, 11877-11888(2013).

    [80] JIN C Y, WADA O. Photonic switching devices based on semiconductor nano-structures[J]. Journal of Physics D: Applied Physics, 47, 133001(2014).

    [81] NOZAKI K, SHINYA A, MATSUO S et al. Ultralow-power all-optical RAM based on nanocavities[J]. Nature Photonics, 6, 248-252(2012).

    [82] PELLEGRINO D, PAGLIANO F, GENCO A et al. Deterministic control of radiative processes by shaping the mode field[J]. Applied Physics Letters, 112, 161110(2018).

    [83] MINKOV M, SAVONA V. Wide-band slow light in compact photonic crystal coupled-cavity waveguides[J]. Optica, 2, 631-634(2015).

    [84] BELLO M, PLATERO G, CIRAC J I et al. Unconventional quantum optics in topological waveguide QED[J]. Science Advances, 5, eaaw0297(2020).

    [85] SATO Y, TANAKA Y, UPHAM J et al. Strong coupling between distant photonic nanocavities and its dynamic control[J]. Nature Photonics, 6, 56-61(2012).

    [86] KURAMOCHI E, NOZAKI K, SHINYA A et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip[J]. Nature Photonics, 8, 474-481(2014).

    [87] KHURGIN J B, NOGINOV M A. How do the purcell factor, the Q-factor, and the beta factor affect the laser threshold?[J]. Laser & Photonics Reviews, 15, 2000250(2021).

    [88] STRAUF S, JAHNKE F. Single quantum dot nanolaser[J]. Laser & Photonics Reviews, 5, 607-633(2011).

    [89] YANG Y, ZONG H, MA C et al. Self-selection mechanism of Fabry-Perot micro/nanoscale wire cavity for single-mode lasing[J]. Optics Express, 25, 21025-21036(2017).

    [90] RUAN J, GUO D, NIU B et al. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications[J]. NPG Asia Materials, 14, 62(2022).

    [91] KIM H-R, M-SHWANG, SMIRNOVA D et al. Multipolar lasing modes from topological corner states[J]. Nature Communications, 11, 5758(2020).

    [92] SHANK C V, BJORKHOLM J E, KOGELNIK H. Tunable distributed-feedback dye laser[J]. Applied Physics Letters, 18, 395-396(2003).

    [93] GU F, XIE F, LIN X et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 6, e17061(2017).

    [94] WANG L F, WANG Y R, FRANCIS H et al. Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection[J]. Optics Express, 28, 16486-16496(2020).

    [95] LIEW S F, REDDING B, GE L et al. Active control of emission directionality of semiconductor microdisk lasers[J]. Applied Physics Letters, 104, 231108(2014).

    [96] GE L, MALIK O, TÜRECI H E. Enhancement of laser power-efficiency by control of spatial hole burning interactions[J]. Nature Photonics, 8, 871-875(2014).

    [97] KEITEL R C, AELLEN M, FEBER B L et al. Active mode switching in plasmonic microlasers by spatial control of optical gain[J]. Nano Letters, 21, 8952-8959(2021).

    [98] BACHELARD N, GIGAN S, NOBLIN X et al. Adaptive pumping for spectral control of random lasers[J]. Nature Physics, 10, 426-431(2014).

    [99] KUMAR B, HOMRI R, PRIYANKA et al. Localized modes revealed in random lasers[J]. Optica, 8, 1033-1039(2021).

    [100] LIU Jiachen, HUANG Yongzhen, HAO Youzeng et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited)[J]. Acta Photonica Sinica, 51, 0251205(2022).

    [101] TANG M, YANG Y D, WU J L et al. Dynamical characteristics of twin-microring lasers with mutual optical injection[J]. Journal of Lightwave Technology, 39, 1444-1450(2021).

    [102] WIECZOREK S, CHOW W W. Global view of nonlinear dynamics in coupled-cavity lasers-a bifurcation study[J]. Optics Communications, 246, 471-493(2005).

    [103] ZHANG C, ZOU C L, DONG H et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators[J]. Science Advances, 3, e1700225(2017).

    [104] ZHOU B, ZHONG Y, JIANG M et al. Linearly polarized lasing based on coupled perovskite microspheres[J]. Nanoscale, 12, 5805-5811(2020).

    [105] JIN L, CHEN X, WU Y et al. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator[J]. Nature Communications, 13, 1727(2022).

    [106] MA X W, HUANG Y Z, YANG Y D et al. Mode coupling in hybrid square-rectangular lasers for single mode operation[J]. Applied Physics Letters, 109, 071102(2016).

    [107] ZHUGE M H, YANG Z, ZHANG J et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling[J]. ACS Nano, 13, 9965-9972(2019).

    [108] SHI X, SONG W, GUO D et al. Selectively visualizing the hidden modes in random lasers for secure communication[J]. Laser & Photonics Reviews, 15, 2100295(2021).

    [109] WANG L F, CHENG X T, ZHANG X D et al. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities[J]. Optics Express, 30, 10229-10238(2022).

    [110] ELLIS B, MAYER M A, SHAMBAT G et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[J]. Nature Photonics, 5, 297-300(2011).

    [111] PELLEGRINO D, BUSI P, PAGLIANO F et al. Mode-field switching of nanolasers[J]. APL Photonics, 5, 066109(2020).

    [112] HAN C, LEE M, CALLARD S et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array[J]. Light: Science & Applications, 8, 40(2019).

    [113] PARTO M, WITTEK S, HODAEI H et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018).

    [114] ZHAO H, MIAO P, TEIMOURPOUR M H et al. Topological hybrid silicon microlasers[J]. Nature Communications, 9, 981(2018).

    [115] WIECZOREK S, KRAUSKOPF B, SIMPSON T B et al. The dynamical complexity of optically injected semiconductor lasers[J]. Physics Reports, 416, 1-128(2005).

    [116] KIPPENBERG T J, HOLZWARTH R, DIDDAMS S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [117] GIBBS H[M]. Optical bistability: controlling light with light(2012).

    [118] MARTY G, COMBRIÉ S, DE ROSSI A et al. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing[J]. APL Photonics, 4, 120801(2019).

    [119] ZOU L X, LIU B W, LV X M et al. Integrated semiconductor twin-microdisk laser under mutually optical injection[J]. Applied Physics Letters, 106, 191107(2015).

    [120] MA C G, XIAO J L, XIAO ZX et al. Chaotic microlasers caused by internal mode interaction for random number generation[J]. Light: Science & Applications, 11, 187(2022).

    [121] YU Y, XUE W, SEMENOVA E et al. Demonstration of a self-pulsing photonic crystal Fano laser[J]. Nature Photonics, 11, 81-84(2017).

    [122] MARTY G, COMBRIÉ S, RAINERI F et al. Photonic crystal optical parametric oscillator[J]. Nature Photonics, 15, 53-58(2021).

    [123] HAMEL P, HADDADI S, RAINERI F et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nature Photonics, 9, 311-315(2015).

    [124] GARBIN B, GIRALDO A, PETERS K J H et al. Spontaneous symmetry breaking in a coherently driven nanophotonic bose-hubbard dimer[J]. Physical Review Letters, 128, 053901(2022).

    [125] JI K, GARBIN B, HEDIR M et al. Non-Hermitian zero-mode laser in a nanophotonic trimer[J]. Physical Review A, 107, L061502(2023).

    [126] HENTINGER F, HEDIR M, GARBIN B et al. Direct observation of zero modes in a non-Hermitian optical nanocavity array[J]. Photonics Research, 10, 574-586(2022).

    [127] TIRABASSI G, JI K, MASOLLER C et al. Binary image classification using collective optical modes of an array of nanolasers[J]. APL Photonics, 7, 090801(2022).

    [128] FRANCIS H, ZHANG X D, CHEN S et al. Optical frequency comb generation via cascaded intensity and phase photonic crystal modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-9(2021).

    [129] ŞEKER E, OLYAEEFAR B, DADASHI K et al. Single-mode quasi PT-symmetric laser with high power emission[J]. Light: Science & Applications, 12, 149(2023).

    [130] FU Ting, WANG Yufei, WANG Xueyou et al. Microstructure lasers based on parity-time symmetry and supersymmetry[J]. Chinese Journal of Lasers, 48, 68-85(2021).

    [131] QI B, CHEN H Z, GE L et al. Parity-time symmetry synthetic lasers: physics and devices[J]. Advanced Optical Materials, 7, 1900694(2019).

    [132] HODAEI H, M-AMIRI, HEINRICH M et al. Parity-time-symmetric microring lasers[J]. Science, 346, 975-978(2014).

    [133] GAO Z, FRYSLIE S T M, THOMPSON B J et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays[J]. Optica, 4, 323-329(2017).

    [134] KIM K H, HWANG M S, KIM H R et al. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains[J]. Nature Communications, 7, 13893(2016).

    [135] TAKATA K, NOZAKI K, KURAMOCHI E et al. Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers[J]. Optica, 8, 184-192(2021).

    [136] FENG L, WONG Z J, MA R M et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 346, 972-975(2014).

    [137] GU Z, ZHANG N, LYU Q et al. Experimental demonstration of PT-symmetric stripe lasers[J]. Laser & Photonics Reviews, 10, 588-594(2016).

    [138] WANG L, CHENG X, ZHANG X et al. Mode selection in L40 photonic crystal cavities via spatially distributed pumping[C](2021).

    [139] WANG L, CHENG X, ZHANG X et al. PT symmetric single-mode line-defect photonic crystal lasers with asymmetric loss design[J]. Optics Letters, 47, 6033-6036(2022).

    [140] LIU Shuo, WANG Yuchen, WANG Xiuhua et al. Research progress on single-mode regulation methods for whispering gallery mode microcavities[J]. Progress in Physics, 43, 117-130(2023).

    [141] LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [142] HSU C W, ZHEN B, STONE A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [143] MIDYA B, ZHAO H, QIAO X et al. Supersymmetric microring laser arrays[J]. Photonics Research, 7, 363-367(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiaotian CHENG, Lingfang WANG, Jiawang YU, Shuning DING, Zhibo NI, Hongbin WANG, Xiaoqing ZHOU, Chaoyuan JIN. Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Microcavity Photonics

    Received: Feb. 25, 2024

    Accepted: Apr. 9, 2024

    Published Online: Jun. 20, 2024

    The Author Email: Chaoyuan JIN (jincy@zju.edu.cn)

    DOI:10.3788/gzxb20245305.0553104

    Topics