Acta Photonica Sinica, Volume. 53, Issue 5, 0553104(2024)
Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)
[1] LOUDON R. The quantum theory of light[M]. OUP Oxford(2000).
[2] PURCELL E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681-681(1946).
[3] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).
[4] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).
[5] NODA S, FUJITA M, ASANO T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 1, 449-458(2007).
[6] LODAHL P, FLORIS VAN DRIEL A, NIKOLAEV I S et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 430, 654-657(2004).
[7] HUGALL J T, SINGH A, VAN HULST N F. Plasmonic cavity coupling[J]. ACS Photonics, 5, 43-53(2018).
[8] HAROCHE S, KLEPPNER D. Cavity quantum electrodynamics[J]. Physics Today, 42, 24-30(1989).
[9] CIRAC J I, ZOLLER P, KIMBLE H J et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 78, 3221-3224(1997).
[10] JOHNE R, SCHUTJENS R, FATTAH POOR S et al. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system[J]. Physical Review A, 91, 063807(2015).
[11] JIN C Y, JOHNE R, SWINKELS M Y et al. Ultrafast non-local control of spontaneous emission[J]. Nature Nanotechnology, 9, 886-890(2014).
[12] CHEN S, FRANCIS H, HHO C et al. Control of quality factor in laterally coupled vertical cavities[J]. IET Optoelectronics, 14, 100-103(2020).
[13] LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 87, 347-400(2015).
[14] JEONG K Y, HWANG M S, KIM J et al. Recent progress in nanolaser technology[J]. Advanced Materials, 32, 2001996(2020).
[15] EINSTEIN A. Zur quantentheorie der strahlung[M]. Hirzel Leipzig(1917).
[16] FOX A M[M]. Quantum optics: an introduction(2006).
[17] NOVOTNY L, HECHT B[M]. Principles of nano-optics(2012).
[18] BARNES W L, HORSLEY S A R, VOS W L. Classical antennas, quantum emitters, and densities of optical states[J]. Journal of Optics, 22, 073501(2020).
[19] KAVOKIN A V, BAUMBERG J J, MALPUECH G et al[M]. Microcavities(2017).
[20] ROMEIRA B, FIORE A. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 54, 1-12(2018).
[21] JOANNOPOULOS J D, VILLENEUVE P R, FAN S. Photonic crystals: putting a new twist on light[J]. Nature, 386, 143-149(1997).
[22] CLAUDON J, BLEUSE J, MALIK N S et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 4, 174-177(2010).
[23] WEI Y, LIU S, LI X et al. Tailoring solid-state single-photon sources with stimulated emissions[J]. Nature Nanotechnology, 17, 470-476(2022).
[24] WANG H, HE Y M, CHUNG T H et al. Towards optimal single-photon sources from polarized microcavities[J]. Nature Photonics, 13, 770-775(2019).
[25] TOMM N, JAVADI A, ANTONIADIS N O et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 16, 399-403(2021).
[26] LIU X, GALFSKY T, SUN Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).
[27] SRINIVASAN K, PAINTER O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system[J]. Nature, 450, 862-865(2007).
[28] ATES S, AGHA I, GULINATTI A et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation[J]. Scientific Reports, 3, 1397(2013).
[29] DUSANOWSKI Ł, KÖCK D, SHIN E et al. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators[J]. Nano Letters, 20, 6357-6363(2020).
[30] BROOKS A, CHU X L, LIU Z et al. Integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics[J]. Nano Letters, 21, 8707-8714(2021).
[31] KIPPENBERG T J, TCHEBOTAREVA A L, KALKMAN J et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity[J]. Physical Review Letters, 103, 027406(2009).
[32] JAVERZAC-GALY C, KUMAR A, SCHILLING R D et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators[J]. Nano Letters, 18, 3138-3146(2018).
[33] DOELEMAN H M, DIELEMAN C D, MENNES C et al. Observation of cooperative Purcell enhancements in antenna-cavity hybrids[J]. ACS Nano, 14, 12027-12036(2020).
[34] ARTEMYEV M V, WOGGON U, WANNEMACHER R et al. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission[J]. Nano Letters, 1, 309-314(2001).
[35] LUO Y, AHMADI E D, SHAYAN K et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities[J]. Nature Communications, 8, 1413(2017).
[36] SINGH A, DE ROQUE P M, CALBRIS G et al. Nanoscale mapping and control of antenna-coupling strength for bright single photon sources[J]. Nano Letters, 18, 2538-2544(2018).
[37] HOANG T B, AKSELROD G M, ARGYROPOULOS C et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 6, 7788(2015).
[38] CHIKKARADDY R, DE NIJS B, BENZ F et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016).
[39] HENNESSY K, BADOLATO A, WINGER M et al. Quantum nature of a strongly coupled single quantum dot-cavity system[J]. Nature, 445, 896-899(2007).
[40] PHILLIPS C L, BRASH A J, GODSLAND M et al. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity[J]. Scientific Reports, 14, 4450(2024).
[41] OHTA R, OTA Y, NOMURA M et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot[J]. Applied Physics Letters, 98, 173104(2011).
[42] OTA Y, IWAMOTO S, KUMAGAI N et al. Spontaneous two-photon emission from a single quantum dot[J]. Physical Review Letters, 107, 233602(2011).
[43] LIU F, BRASH A J, O'HARA J et al. High Purcell factor generation of indistinguishable on-chip single photons[J]. Nature Nanotechnology, 13, 835-840(2018).
[44] RAO M, SHI F, RAO Z et al. Single photon emitter deterministically coupled to a topological corner state[J]. Light: Science & Applications, 13, 19(2024).
[45] KURUMA K, OTA Y, KAKUDA M et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots[J]. APL Photonics, 5, 046106(2020).
[46] GONG Y, MAKAROVA M, YERCI S et al. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities[J]. Optics Express, 18, 13863-13873(2010).
[47] SUMIKURA H, KURAMOCHI E, TANIYAMA H et al. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity[J]. Scientific Reports, 4, 5040(2014).
[48] DIBOS A M, SOLOMON M T, SULLIVAN S E et al. Purcell Enhancement of Erbium Ions in TiO2 on Silicon Nanocavities[J]. Nano Letters, 22, 6530-6536(2022).
[49] SIPAHIGIL A, EVANS R E, SUKACHEV D D et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 354, 847-850(2016).
[50] ASANO T, OCHI Y, TAKAHASHI Y et al. Photonic crystal nanocavity with a Q factor exceeding eleven million[J]. Optics Express, 25, 1769-1777(2017).
[51] FLAGG E B, MULLER A, ROBERTSON J W et al. Resonantly driven coherent oscillations in a solid-state quantum emitter[J]. Nature Physics, 5, 203-207(2009).
[52] ENGLUND D, FARAON A, FUSHMAN I et al. Controlling cavity reflectivity with a single quantum dot[J]. Nature, 450, 857-861(2007).
[53] RAKHER M T, STOLTZ N G, COLDREN L A et al. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots[J]. Physical Review Letters, 102, 097403(2009).
[54] QIAN Z, SHAN L, ZHANG X et al. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX, 2, 21(2021).
[55] DING X, HE Y, DUAN Z C et al. On-demand single photons with high extraction eifficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 116, 020401(2016).
[56] SATTLER T, PEINKE E, BLEUSE J et al. Cavity switching: a novel resource for solid-state quantum optics[C](2017).
[57] PEINKE E, SATTLER T, TORELLY G M et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers[J]. Light: Science & Applications, 10, 215(2021).
[58] KINKHABWALA A, YU Z, FAN S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).
[59] WANG Q, STOBBE S, LODAHL P. Mapping the local density of optical states of a photonic crystal with single quantum dots[J]. Physical Review Letters, 107, 167404(2011).
[60] YAO P, MANGA RAO V S C, HUGHES S. On-chip single photon sources using planar photonic crystals and single quantum dots[J]. Laser & Photonics Reviews, 4, 499-516(2010).
[61] UPPU R, PEDERSEN F T, WANG Y et al. Scalable integrated single-photon source[J]. Science Advances, 6, eabc8268(2020).
[62] COUTEAU C, BARZ S, DURT T et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 5, 326-338(2023).
[63] LI Hancong, CHEN Xiqing, YANG Jingnan et al. Luminescence and applications of single quantum dots[J]. Chinese Journal of Luminescence, 44, 1251-1272(2023).
[64] PENG K, WU S, XIE X et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting[J]. Physical Review Applied, 11, 024015(2019).
[65] MILLER D A B, CHEMLA D S, DAMEN T C et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect[J]. Physical Review Letters, 53, 2173-2176(1984).
[66] PENG K, WU S, TANG J et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field[J]. Physical Review Applied, 8, 064018(2017).
[67] SöLLNER I, MAHMOODIAN S, HANSEN S L et al. Deterministic photon-emitter coupling in chiral photonic circuits[J]. Nature Nanotechnology, 10, 775-778(2015).
[68] MIDOLO L, PAGLIANO F, HOANG T B et al. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity[J]. Applied Physics Letters, 101, 091106(2012).
[69] PAGLIANO F, CHO Y, XIA T et al. Dynamically controlling the emission of single excitons in photonic crystal cavities[J]. Nature Communications, 5, 5786(2014).
[70] PETRUZZELLA M, XIA T, PAGLIANO F et al. Fully tuneable, Purcell-enhanced solid-state quantum emitters[J]. Applied Physics Letters, 107, 141109(2015).
[71] PETRUZZELLA M, PAGLIANO F M, ZOBENICA Ž et al. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities[J]. Applied Physics Letters, 111, 251101(2017).
[72] SIAMPOUR H, O'ROURKE C, BRASH A J et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide[J]. npj Quantum Information, 9, 15(2023).
[73] IMAMOG A, AWSCHALOM D D, BURKARD G et al. Quantum information processing using quantum dot spins and cavity QED[J]. Physical Review Letters, 83, 4204(1999).
[74] BIOLATTI E, IOTTI R C, ZANARDI P et al. Quantum information processing with semiconductor macroatoms[J]. Physical Review Letters, 85, 5647(2000).
[75] BAYER M, GUTBROD T, REITHMAIER J P et al. Optical modes in photonic molecules[J]. Physical Review Letters, 81, 2582-2585(1998).
[76] CLAUDE C T. Manipulating atoms with photons[J]. Physica Scripta, 1998, 33(1998).
[77] TIAN F, SUMIKURA H, KURAMOCHI E et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems[J]. Optica, 9, 309-316(2022).
[78] BEKELE D, YU Y, YVIND K et al. In-plane photonic crystal devices using Fano resonances[J]. Laser & Photonics Reviews, 13, 1900054(2019).
[79] NOZAKI K, SHINYA A, MATSUO S et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 21, 11877-11888(2013).
[80] JIN C Y, WADA O. Photonic switching devices based on semiconductor nano-structures[J]. Journal of Physics D: Applied Physics, 47, 133001(2014).
[81] NOZAKI K, SHINYA A, MATSUO S et al. Ultralow-power all-optical RAM based on nanocavities[J]. Nature Photonics, 6, 248-252(2012).
[82] PELLEGRINO D, PAGLIANO F, GENCO A et al. Deterministic control of radiative processes by shaping the mode field[J]. Applied Physics Letters, 112, 161110(2018).
[83] MINKOV M, SAVONA V. Wide-band slow light in compact photonic crystal coupled-cavity waveguides[J]. Optica, 2, 631-634(2015).
[84] BELLO M, PLATERO G, CIRAC J I et al. Unconventional quantum optics in topological waveguide QED[J]. Science Advances, 5, eaaw0297(2020).
[85] SATO Y, TANAKA Y, UPHAM J et al. Strong coupling between distant photonic nanocavities and its dynamic control[J]. Nature Photonics, 6, 56-61(2012).
[86] KURAMOCHI E, NOZAKI K, SHINYA A et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip[J]. Nature Photonics, 8, 474-481(2014).
[87] KHURGIN J B, NOGINOV M A. How do the purcell factor, the Q-factor, and the beta factor affect the laser threshold?[J]. Laser & Photonics Reviews, 15, 2000250(2021).
[88] STRAUF S, JAHNKE F. Single quantum dot nanolaser[J]. Laser & Photonics Reviews, 5, 607-633(2011).
[89] YANG Y, ZONG H, MA C et al. Self-selection mechanism of Fabry-Perot micro/nanoscale wire cavity for single-mode lasing[J]. Optics Express, 25, 21025-21036(2017).
[90] RUAN J, GUO D, NIU B et al. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications[J]. NPG Asia Materials, 14, 62(2022).
[91] KIM H-R, M-SHWANG, SMIRNOVA D et al. Multipolar lasing modes from topological corner states[J]. Nature Communications, 11, 5758(2020).
[92] SHANK C V, BJORKHOLM J E, KOGELNIK H. Tunable distributed-feedback dye laser[J]. Applied Physics Letters, 18, 395-396(2003).
[93] GU F, XIE F, LIN X et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 6, e17061(2017).
[94] WANG L F, WANG Y R, FRANCIS H et al. Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection[J]. Optics Express, 28, 16486-16496(2020).
[95] LIEW S F, REDDING B, GE L et al. Active control of emission directionality of semiconductor microdisk lasers[J]. Applied Physics Letters, 104, 231108(2014).
[96] GE L, MALIK O, TÜRECI H E. Enhancement of laser power-efficiency by control of spatial hole burning interactions[J]. Nature Photonics, 8, 871-875(2014).
[97] KEITEL R C, AELLEN M, FEBER B L et al. Active mode switching in plasmonic microlasers by spatial control of optical gain[J]. Nano Letters, 21, 8952-8959(2021).
[98] BACHELARD N, GIGAN S, NOBLIN X et al. Adaptive pumping for spectral control of random lasers[J]. Nature Physics, 10, 426-431(2014).
[99] KUMAR B, HOMRI R, PRIYANKA et al. Localized modes revealed in random lasers[J]. Optica, 8, 1033-1039(2021).
[100] LIU Jiachen, HUANG Yongzhen, HAO Youzeng et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited)[J]. Acta Photonica Sinica, 51, 0251205(2022).
[101] TANG M, YANG Y D, WU J L et al. Dynamical characteristics of twin-microring lasers with mutual optical injection[J]. Journal of Lightwave Technology, 39, 1444-1450(2021).
[102] WIECZOREK S, CHOW W W. Global view of nonlinear dynamics in coupled-cavity lasers-a bifurcation study[J]. Optics Communications, 246, 471-493(2005).
[103] ZHANG C, ZOU C L, DONG H et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators[J]. Science Advances, 3, e1700225(2017).
[104] ZHOU B, ZHONG Y, JIANG M et al. Linearly polarized lasing based on coupled perovskite microspheres[J]. Nanoscale, 12, 5805-5811(2020).
[105] JIN L, CHEN X, WU Y et al. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator[J]. Nature Communications, 13, 1727(2022).
[106] MA X W, HUANG Y Z, YANG Y D et al. Mode coupling in hybrid square-rectangular lasers for single mode operation[J]. Applied Physics Letters, 109, 071102(2016).
[107] ZHUGE M H, YANG Z, ZHANG J et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling[J]. ACS Nano, 13, 9965-9972(2019).
[108] SHI X, SONG W, GUO D et al. Selectively visualizing the hidden modes in random lasers for secure communication[J]. Laser & Photonics Reviews, 15, 2100295(2021).
[109] WANG L F, CHENG X T, ZHANG X D et al. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities[J]. Optics Express, 30, 10229-10238(2022).
[110] ELLIS B, MAYER M A, SHAMBAT G et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[J]. Nature Photonics, 5, 297-300(2011).
[111] PELLEGRINO D, BUSI P, PAGLIANO F et al. Mode-field switching of nanolasers[J]. APL Photonics, 5, 066109(2020).
[112] HAN C, LEE M, CALLARD S et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array[J]. Light: Science & Applications, 8, 40(2019).
[113] PARTO M, WITTEK S, HODAEI H et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018).
[114] ZHAO H, MIAO P, TEIMOURPOUR M H et al. Topological hybrid silicon microlasers[J]. Nature Communications, 9, 981(2018).
[115] WIECZOREK S, KRAUSKOPF B, SIMPSON T B et al. The dynamical complexity of optically injected semiconductor lasers[J]. Physics Reports, 416, 1-128(2005).
[116] KIPPENBERG T J, HOLZWARTH R, DIDDAMS S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).
[117] GIBBS H[M]. Optical bistability: controlling light with light(2012).
[118] MARTY G, COMBRIÉ S, DE ROSSI A et al. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing[J]. APL Photonics, 4, 120801(2019).
[119] ZOU L X, LIU B W, LV X M et al. Integrated semiconductor twin-microdisk laser under mutually optical injection[J]. Applied Physics Letters, 106, 191107(2015).
[120] MA C G, XIAO J L, XIAO ZX et al. Chaotic microlasers caused by internal mode interaction for random number generation[J]. Light: Science & Applications, 11, 187(2022).
[121] YU Y, XUE W, SEMENOVA E et al. Demonstration of a self-pulsing photonic crystal Fano laser[J]. Nature Photonics, 11, 81-84(2017).
[122] MARTY G, COMBRIÉ S, RAINERI F et al. Photonic crystal optical parametric oscillator[J]. Nature Photonics, 15, 53-58(2021).
[123] HAMEL P, HADDADI S, RAINERI F et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nature Photonics, 9, 311-315(2015).
[124] GARBIN B, GIRALDO A, PETERS K J H et al. Spontaneous symmetry breaking in a coherently driven nanophotonic bose-hubbard dimer[J]. Physical Review Letters, 128, 053901(2022).
[125] JI K, GARBIN B, HEDIR M et al. Non-Hermitian zero-mode laser in a nanophotonic trimer[J]. Physical Review A, 107, L061502(2023).
[126] HENTINGER F, HEDIR M, GARBIN B et al. Direct observation of zero modes in a non-Hermitian optical nanocavity array[J]. Photonics Research, 10, 574-586(2022).
[127] TIRABASSI G, JI K, MASOLLER C et al. Binary image classification using collective optical modes of an array of nanolasers[J]. APL Photonics, 7, 090801(2022).
[128] FRANCIS H, ZHANG X D, CHEN S et al. Optical frequency comb generation via cascaded intensity and phase photonic crystal modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-9(2021).
[129] ŞEKER E, OLYAEEFAR B, DADASHI K et al. Single-mode quasi PT-symmetric laser with high power emission[J]. Light: Science & Applications, 12, 149(2023).
[130] FU Ting, WANG Yufei, WANG Xueyou et al. Microstructure lasers based on parity-time symmetry and supersymmetry[J]. Chinese Journal of Lasers, 48, 68-85(2021).
[131] QI B, CHEN H Z, GE L et al. Parity-time symmetry synthetic lasers: physics and devices[J]. Advanced Optical Materials, 7, 1900694(2019).
[132] HODAEI H, M-AMIRI, HEINRICH M et al. Parity-time-symmetric microring lasers[J]. Science, 346, 975-978(2014).
[133] GAO Z, FRYSLIE S T M, THOMPSON B J et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays[J]. Optica, 4, 323-329(2017).
[134] KIM K H, HWANG M S, KIM H R et al. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains[J]. Nature Communications, 7, 13893(2016).
[135] TAKATA K, NOZAKI K, KURAMOCHI E et al. Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers[J]. Optica, 8, 184-192(2021).
[136] FENG L, WONG Z J, MA R M et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 346, 972-975(2014).
[137] GU Z, ZHANG N, LYU Q et al. Experimental demonstration of PT-symmetric stripe lasers[J]. Laser & Photonics Reviews, 10, 588-594(2016).
[138] WANG L, CHENG X, ZHANG X et al. Mode selection in L40 photonic crystal cavities via spatially distributed pumping[C](2021).
[139] WANG L, CHENG X, ZHANG X et al. PT symmetric single-mode line-defect photonic crystal lasers with asymmetric loss design[J]. Optics Letters, 47, 6033-6036(2022).
[140] LIU Shuo, WANG Yuchen, WANG Xiuhua et al. Research progress on single-mode regulation methods for whispering gallery mode microcavities[J]. Progress in Physics, 43, 117-130(2023).
[141] LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).
[142] HSU C W, ZHEN B, STONE A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).
[143] MIDYA B, ZHAO H, QIAO X et al. Supersymmetric microring laser arrays[J]. Photonics Research, 7, 363-367(2019).
Get Citation
Copy Citation Text
Xiaotian CHENG, Lingfang WANG, Jiawang YU, Shuning DING, Zhibo NI, Hongbin WANG, Xiaoqing ZHOU, Chaoyuan JIN. Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553104
Category: Special Issue for Microcavity Photonics
Received: Feb. 25, 2024
Accepted: Apr. 9, 2024
Published Online: Jun. 20, 2024
The Author Email: Chaoyuan JIN (jincy@zju.edu.cn)