Journal of Hebei University of Technology, Volume. 54, Issue 3, 16(2025)

Regulation mechanisms of micro/nano-scale interfacial heat transfer in SiO2/Na2SO4·10H2O during thermal energy storage processes

ZHANG Zhenguo1,2,3, QI Kai1,2,3, LIU Xinjian1,2,3、*, and RAO Zhonghao1,2,3
Author Affiliations
  • 1School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China
  • 3Hebei Key Laboratory of Thermal Science and Energy Clean Utilization, Hebei University of Technology, Tianjin 300401, China
  • show less
    References(35)

    [1] [1] RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: a review[J]. Energy Conversion and Management, 2020, 223: 113295.

    [2] [2] MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 532-545.

    [3] [3] ANEKE M, WANG M H. Energy storage technologies and real life applications-A state of the art review[J]. Applied Energy, 2016, 179: 350-377.

    [4] [4] WANG D L, LIU N N, CHEN F, et al. Progress and prospects of energy storage technology research: based on multidimensional comparison[J]. Journal of Energy Storage, 2024, 75: 109710.

    [5] [5] LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132.

    [6] [6] WANG G, TANG Z D, GAO Y, et al. Phase change thermal storage materials for interdisciplinary applications[J]. Chemical Reviews, 2023, 123 (11): 6953-7024.

    [7] [7] HU L, ZHANG L, CUI W, et al. Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications[J]. Journal of Materials Science & Technology, 2025, 210: 204-226.

    [8] [8] YAO J N, ZHANG G T, ZHANG Y, et al. Fabrication and thermal properties of composite phase change materials based on modified diatomite for thermal energy storage[J]. Journal of Energy Storage, 2025, 113: 115749.

    [9] [9] SAID M A, HOSSEINZADEH K, KAPLAN S, et al. Accelerated charging dynamics in shell-and-multi-tube latent heat storage systems for building applications[J]. Journal of Energy Storage, 2024, 81: 110286.

    [10] [10] SONG Z L, WANG J, TANG S K, et al. Dual-objective topology optimization design for latent heat storage systems using composite phase change materials[J]. Energy, 2025, 319: 135069.

    [11] [11] YU K Y, LIU Y S, YANG Y Z. Review on form-stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties[J]. Applied Energy, 2021, 292: 116845.

    [12] [12] LEI H, WANG X Z, LI Y F, et al. Organic-inorganic hybrid phase change materials with high energy storage density based on porous shaped paraffin/hydrated salt/expanded graphite composites[J]. Energy, 2024, 304: 132169.

    [13] [13] DIXIT P, REDDY V J, PARVATE S, et al. Salt hydrate phase change materials: current state of art and the road ahead[J]. Journal of Energy Storage, 2022, 51: 104360.

    [14] [14] LI Y X, LI C C, LIN N Z, et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage[J]. Materials Today Energy, 2021, 22: 100866.

    [15] [15] CHEN Z B, ZHANG X L, JI J, et al. A review of the application of hydrated salt phase change materials in building temperature control[J]. Journal of Energy Storage, 2022, 56: 106157.

    [16] [16] ZHANG Y, ZHANG G T, YAO J N, et al. Investigation on thermal performance of epoxy resin encapsulated eutectic hydrated salt/expanded perlite composite phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2025, 283: 113453.

    [17] [17] LIU Y Z, LI X X, XU Y Z, et al. Carbon-enhanced hydrated salt phase change materials for thermal management applications[J]. Nanomaterials, 2024, 14(13): 1077.

    [18] [18] RAJAMONY R K, SOFIAHAG N, KALIDASAN B, et al. Experimental investigation of tailoring functionalized carbon-based nano additives infused phase change material for enhanced thermal energy storage[J]. Process Safety and Environmental Protection, 2024, 190: 944-961.

    [19] [19] YU J Q, LIU X J, RAO Z H. Biomimetic phase change capsules with conch shell structures for improving thermal energy storage efficiency[J]. Journal of Energy Storage, 2024, 90: 111725.

    [20] [20] BOOTH J R, DAVIES J D, BON S A F. Phase change material nanocapsules for latent function thermal fluids with tuneable thermal energy storage profiles[J]. Polymer Chemistry, 2024, 15(33): 3359-3377.

    [21] [21] LAWAG R A, ALI H M. Phase change materials for thermal management and energy storage: a review[J]. Journal of Energy Storage, 2022, 55: 105602.

    [22] [22] SAID Z, PANDEY A K, TIWARI A K, et al. Nano-enhanced phase change materials: Fundamentals and applications[J]. Progress in Energy and Combustion Science, 2024, 104: 101162.

    [23] [23] CRDENAS-RAMREZ C, GMEZ M, JARAMILLO F. Characterization of a porous mineral as a promising support for shape-stabilized phase change materials[J]. Journal of Energy Storage, 2019, 26: 101041.

    [24] [24] ISHAK S, YIO M, MOON J, et al. Hydration and microstructural development of cement pastes incorporating diatomaceous earth, expanded perlite, and shape-stabilized phase change materials (SSPCMs)[J]. Construction and Building Materials, 2025, 468: 140483.

    [25] [25] ZOU T, FU W W, LIANG X H, et al. Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage[J]. International Journal of Refrigeration, 2019, 101: 117-124.

    [26] [26] PENG S Q, HUANG J, WANG T Y, et al. Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4·12H2O as inorganic PCM[J]. Thermochimica Acta, 2019, 675: 1-8.

    [27] [27] LI M, WANG W, ZHANG Z G, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3297-3308.

    [28] [28] KAMBUROV S, SCHMIDT H, VOIGT W, et al. Similarities and peculiarities between the crystal structures of the hydrates of sodium sulfate and selenate[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2014, 70: 714-722.

    [29] [29] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37(12): 6991-7000.

    [30] [30] LORENTZ HA. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase[J]. Annalen der Physik, 1881, 248(1): 127-136.

    [31] [31] YU G J, JI G F, GAO Y, et al. Molecular dynamics elucidation of melting and solidification mechanisms in sodium sulfate decahydrate for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2025, 282: 113368.

    [32] [32] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171.

    [33] [33] VERLET L. Computer “experiments” on classical fluids. I. thermodynamical properties of lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103.

    [34] [34] CROZIER P S, ROWLEY R L, HENDERSON D. Molecular-dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes[J]. The Journal of Chemical Physics, 2001, 114(17): 7513-7517.

    [35] [35] HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical ReviewA, General Physics, 1985, 31(3): 1695-1697.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Zhenguo, QI Kai, LIU Xinjian, RAO Zhonghao. Regulation mechanisms of micro/nano-scale interfacial heat transfer in SiO2/Na2SO4·10H2O during thermal energy storage processes[J]. Journal of Hebei University of Technology, 2025, 54(3): 16

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 14, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: LIU Xinjian (liuxinjian@hebut.edu.cn)

    DOI:10.14081/j.cnki.hgdxb.2025.03.003

    Topics