Infrared and Laser Engineering, Volume. 50, Issue 3, 20210079(2021)
Development of 1.5 μm lidar for atmospheric detection(Invited)
[1] Hua Dengxin, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 29, 1063-1065(2004).
[2] Bu Lingbing, Zhu Yazong, Shan Kunling, et al. Development of probe of cloud droplet[J]. Infrared and Laser Engineering, 40, 1923-1927(2011).
[3] Chen Weibiao, Zhou Jun, Liu Jiqiao, et al. Doppler lidar and it’s all solid-state single frequency laser[J]. Infrared and Laser Engineering, 37, 57-60(2008).
[4] Xian Jinhong, Sun Dongsong, Xu Wenjing, et al. Urban air pollution monitoring using scanning Lidar[J]. Environmental Pollution, 258, 113696(2020).
[5] Wang Jie, Liu Wenqing, Liu Cheng, et al. The determination of aerosol distribution by a no-blind-zone scanning Lidar[J]. Remote Sensing, 12, 626(2020).
[6] Liu Zhishen, Liu Bingyi, Wu Songhua, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements[J]. Optics Letters, 33, 1485-1487(2008).
[7] Xia Haiyun, Dou Xiankang, Sun Dongsong, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating systemlevel optical frequency control method[J]. Optics Express, 20, 15286-15300(2016).
[8] Xia Haiyun, Dou Xiankang, Shangguan Mingjia, et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar[J]. Optics Express, 22, 21775-21789(2014).
[9] Qiu Jiawei, Xia Haiyun, Dou Xiankang, et al. Optimization of scanning Fabry-Perot interferometer in the high spectral resolution lidar for stratospheric temperature detection[J]. Optical Engineering, 55, 084107(2016).
[10] Yu Chao, Shangguan Mingjia, Xia Haiyun, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications[J]. Optics Express, 25, 14611-14620(2017).
[11] Shang Xiang, Xia Haiyun, Dou Xiankang, et al. Adaptive inversion algorithm for 1.5 μm visibility lidar incorporating in situ Angstrom wavelength exponent[J]. Optics Communications, 418, 129-134(2018).
[12] [12] The Optical Society, Lightbased method improves practicality quality of remote wind measurements258 [NOL]. OSA News Release, 20170906.
[13] Xia Haiyun, Sun Dongsong, Shen Fahua, et al. Direct detection Doppler wind lidar with twin-channel Fabry-Perot interferometer[J]. Infrared and Laser Engineering, 35, 273-278(2006).
[14] Shanguan Mingjia, Wang Chong, Xia Haiyun, et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique[J]. Optics Communications, 398, 95-100(2017).
[15] Xia Haiyun, Shentu Guoliang, Shangguan Mingjia, et al. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector[J]. Optics Letters, 40, 1579-1582(2015).
[16] Xia Haiyun, Shangguan Mingjia, Dou Xiankang, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer[J]. Optics Letters, 41, 5218-5221(2016).
[17] Xia Haiyun, Sun Dongsong, Dong Jingjing, et al. Illumination effects on the dual Fabry-Perot etalon based Doppler wind lidar[J]. Infrared and Laser Engineering, 36, 377-381(2007).
[18] Shangguan Mingjia, Xia Haiyun, Wang Chong, et al. et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 42, 3541-3544(2017).
[19] Qiu Jiawei, Xia Haiyun, Dou Xiankang, et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single photon detector[J]. Optics Letters, 42, 4454-4457(2017).
[20] Yu Chao, Qiu Jiawei, Xia Haiyun, et al. Compact 1.5 μm cloud lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector[J]. Review of Scientific Instruments, 89, 103106(2018).
[21] Zhang Zhen, Xia Haiyun, Yu Saifen, et al. Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection[J]. Applied Physics Letters, 116, 171106(2020).
[22] Abari C, Chu Xinzhao, Hardesty Michael, et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations[J]. Applied Optics, 54, 8999-9009(2015).
[23] Wang Chong, Xia Haiyun, Shangguan Mingjia, et al. 1.5 µm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 25, 20663-20674(2017).
[24] Wang Chong, Xia Haiyun, Liu Yanping, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 424, 48-53(2018).
[25] Wang Chong, Xia Haiyun, Wu Yunbin, et al. Meter-scale spatial resolution coherent Doppler wind lidar based on golay coding[J]. Optics Letters, 44, 311-314(2019).
[26] Wang Chong, Jia Mingjiao, Xia Haiyun, et al. Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar[J]. Atmospheric Measurement Techniques, 12, 3303-3315(2019).
[27] Wei Tianwen, Xia Haiyun, Wu Yunbin, et al. Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting[J]. Optics Express, 28, 29662-29675(2020).
[28] Wei Tianwen, Xia Haiyun, Hu Jianjun, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar[J]. Optics Express, 27, 31235-31245(2019).
[29] Yuan Jinlong, Xia Haiyu, Wei Tianwen, et al. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of power spectrum of coherent Doppler wind lidar[J]. Optics Express, 28, 37406-37418(2020).
Get Citation
Copy Citation Text
Jiawei Qiu, Zhen Zhang, Saifen Yu, Tianwen Wei, Jinlong Yuan, Haiyun Xia. Development of 1.5 μm lidar for atmospheric detection(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210079
Category: Special issue—Lidar
Received: Feb. 1, 2021
Accepted: --
Published Online: Jul. 15, 2021
The Author Email: