Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 12, 4639(2024)

Preparation and Properties of Ag/CuO/TiO2/Natural Zeolite Based Composites with Visible Light Photocatalytic/Antibacterial Properties

YU Qianru1, WANG Lipeng1, DU Fuling1, LIANG Xinchao1, LIU Siqi1, and WANG Cheng1,2、*
Author Affiliations
  • 1School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
  • 2Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Xi'an 710021, China
  • show less
    References(26)

    [1] [1] BUKHARI S S, BEHIN J, KAZEMIAN H, et al. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review[J]. Fuel, 2015, 140: 250-266.

    [2] [2] MCCUSKER L B, BAERLOCHER C. Zeolite structures[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007: 13-37.

    [6] [6] WAHONO S K, STALIN J, ADDAI-MENSAH J, et al. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity[J]. Microporous and Mesoporous Materials, 2020, 294: 109871.

    [7] [7] ATES A. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions[J]. Journal of Colloid and Interface Science, 2018, 523: 266-281.

    [8] [8] RAKHYM A B, SEILKHANOVA G A, MASTAI Y. Physicochemical evaluation of the effect of natural zeolite modification with didodecyldimethylammonium bromide on the adsorption of Bisphenol-A and Propranolol Hydrochloride[J]. Microporous and Mesoporous Materials, 2021, 318: 111020.

    [9] [9] KRAJINIK D, DAKOVI A, MILOJEVI M, et al. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 165-172.

    [10] [10] LIU C W, XIN M D, WANG C L, et al. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane[J]. ACS Applied Nano Materials, 2023, 6(7): 5374-5383.

    [11] [11] RUSSO A V, TORIGGIA L F, JACOBO S E. Natural clinoptilolite-zeolite loaded with iron for aromatic hydrocarbons removal from aqueous solutions[J]. Journal of Materials Science, 2014, 49(2): 614-620.

    [13] [13] DASHTPEYMA G, SHABANIAN S R. Efficient photocatalytic oxidative desulfurization of liquid petroleum fuels under visible-light irradiation using a novel ternary heterogeneous BiVO4-CuO/modified natural clinoptilolite zeolite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 445: 115024.

    [14] [14] WANG C C, CHEN Q, YIN R X, et al. Photothermal effect and antimicrobial properties of cerium-doped bioactive glasses[J]. Ceramics International, 2024, 50(11): 20235-20246.

    [15] [15] LI Y Z, TAN Q Q, LI T T, et al. Ultrasmall Ag clusters in situ encapsulated into silicalite-1 zeolite with controlled release behavior and enhanced antibacterial activity[J]. Microporous and Mesoporous Materials, 2022, 330: 111617.

    [16] [16] BEHZADI POUR G, SHAJEE NIA E, DARABI E, et al. Fast NO2 gas pollutant removal using CNTs/TiO2/CuO/zeolite nanocomposites at the room temperature[J]. Case Studies in Chemical and Environmental Engineering, 2023, 8: 100527.

    [19] [19] WANG C, CAO L Y, HUANG J F. Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite[J]. Surface and Interface Analysis, 2017, 49(12): 1249-1255.

    [20] [20] WANG C, LENG S Z, GUO H D, et al. Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment[J]. Applied Surface Science, 2019, 498: 143874.

    [21] [21] ZHOU P F, SHEN Y B, ZHAO S K, et al. Facile synthesis of clinoptilolite-supported Ag/TiO2 nanocomposites for visible-light degradation of xanthates[J]. Applied Surface Science, 2019, 498: 143874.

    [22] [22] KUMAR S, SINHA A K, HEGDE S G, et al. Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5[J]. Journal of Molecular Catalysis A: Chemical, 2000, 154(1/2): 115-120.

    [23] [23] ZHANG X H, WANG L L, LIU C B, et al. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol[J]. Journal of Hazardous Materials, 2016, 313: 244-252.

    [25] [25] GUESH K, MRQUEZ-LVAREZ C, CHEBUDE Y, et al. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y[J]. Applied Surface Science, 2016, 378: 473-478.

    [26] [26] LI Y, QIAN W Y, XIA Y, et al. Highly efficient sunlight-driven LSPR-enhanced core-shell Ag dendrite/g-C3N4 composite photocatalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 133018.

    [27] [27] YU D X, XU L, ZHANG H Z, et al. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction[J]. Chinese Chemical Letters, 2023, 34(7): 107771.

    [28] [28] WANG W W, ZHANG D L, SUN P X, et al. High efficiency photocatalytic degradation of indoor formaldehyde by Ag/g-C3N4/TiO2 composite catalyst with ZSM-5 as the carrier[J]. Microporous and Mesoporous Materials, 2021, 322: 111134.

    [29] [29] CHEN Y Y, WANG X L, ZENG Z R, et al. Towards molecular understanding of surface and interface catalytic engineering in TiO2/TiOF2 nanosheets photocatalytic antibacterial under visible light irradiation[J]. Journal of Hazardous Materials, 2024, 465: 133429.

    [30] [30] GAO Y, DOU H W, MA Y, et al. Antibacterial performance effects of Ag NPs in situ loaded in MOFs nano-supports prepared by post-synthesis exchange method[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112133.

    [31] [31] YANG S Y, ZHANG F, ZHAO J P, et al. Synthesis of inorganic/organic hybrid-shell antibacterial polyurea microcapsules loaded with Ag/TiO2 nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 691: 133814.

    [32] [32] DOS SANTOS V H J M, PONTIN D, PONZI G G D, et al. Application of Fourier transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement[J]. Construction and Building Materials, 2021, 313: 125413.

    [33] [33] ZHAO J Q, HU M M, LIU W M, et al. Toughening effects of well-dispersed carboxylated styrene-butadiene latex powders on the properties of oil well cement[J]. Construction and Building Materials, 2022, 340: 127768.

    Tools

    Get Citation

    Copy Citation Text

    YU Qianru, WANG Lipeng, DU Fuling, LIANG Xinchao, LIU Siqi, WANG Cheng. Preparation and Properties of Ag/CuO/TiO2/Natural Zeolite Based Composites with Visible Light Photocatalytic/Antibacterial Properties[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4639

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 22, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email: Cheng WANG (wangcheng@sust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics