Photonics Research, Volume. 9, Issue 3, B45(2021)
Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation
[1] P. J. Verheijen. Statistical distributions in particle technology. Particle Technology Course(2001).
[2] D. A. Nix, A. S. Weigend. Estimating the mean and variance of the target probability distribution. Proceedings of the IEEE International Conference on Neural Networks (ICNN’94), 55-60(1994).
[13] A. Krizhevsky, I. Sutskever, G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105(2012).
[14] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440(2015).
[15] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).
[16] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).
[17] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708(2017).
[24] C. Shen, L. Chen, Y. Gonzalez, X. Jia. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy(2020).
[28] E. Woodcock, T. Murphy, P. Hemmings, S. Longworth. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Conference on Applications of Computing Methods to Reactor Problems, 557-579(1965).
[29] E. Jonsson, S. C. Huang, T. Chan. Total variation regularization in positron emission tomography(1998).
[32] H. Van Hasselt, A. Guez, D. Silver. Deep reinforcement learning with double Q-learning(2015).
[34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-Cam: visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision, 618-626(2017).
[35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard. TensorFlow: a system for large-scale machine learning. 12th Symposium on Operating Systems Design and Implementation, 265-283(2016).
[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958(2014).
Get Citation
Copy Citation Text
Jianhui Ma, Zun Piao, Shuang Huang, Xiaoman Duan, Genggeng Qin, Linghong Zhou, Yuan Xu, "Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation," Photonics Res. 9, B45 (2021)
Special Issue: DEEP LEARNING IN PHOTONICS
Received: Oct. 26, 2020
Accepted: Dec. 21, 2020
Published Online: Feb. 24, 2021
The Author Email: Linghong Zhou (smart@smu.edu.cn), Yuan Xu (yuanxu@smu.edu.cn)