Optoelectronics Letters, Volume. 21, Issue 8, 462(2025)
A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator
[1] [1] PENDRY J B, MARTIN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured sufaces[J]. Science, 2004, 305(5685): 847-848.
[2] [2] PITARKE J M, SILKIN V M, CHULKOV E V, et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on progress in physics, 2006, 70(1): 1-87.
[3] [3] NAGPAL P, LINDQUIST N C, OH S H, et al. Ultrasmooth patterned metals for plasmonics and metamaterials[J]. Science, 2009, 325(5940): 594-597.
[4] [4] SHEN X P, CUI T J. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the national academy of sciences, 2013, 110(1): 40-45.
[5] [5] BAI Y K, LI S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon waveguide[J]. Optoelectronics letters, 2023, 19(2): 72-76.
[6] [6] ZHANG C, REN J, DU X, et al. Dual-beam leaky-wave antenna based on dual-mode spoof surface plasmon polaritons[J]. IEEE antennas and wireless propagation letters, 2021, 20(10): 2008-2012.
[7] [7] CHAI B, LI Y J, BAI Y K. A wide-band continuous beam-scanning leaky-wave antenna with a stable gain fed by spoof surface plasmon polaritons[J]. Optoelectronics letters, 2022, 18(4): 210-214.
[8] [8] XU H T, GUAN D F, YANG Z B, et al. An ultra-wideband out-of-phase power divider based on odd-mode spoof surface plasmon polariton[J]. International journal of RF and microwave computer-aided engineering, 2021, 31(4): e22583.
[9] [9] EHSAN F, NADER K, MOHAMMAD A C. An ultra-wideband three-way power divider based on spoof surface plasmon polaritons[J]. Journal of applied physics, 2018, 124(23): 235310.
[10] [10] MITTAL G, PATHAK N P. Spoof surface plasmon polaritons based microwave bandpass filter[J]. Microwave and optical technology letters, 2020, 63(2): 51-57.
[11] [11] GORBACHEV A P, TARASENKO N V, ATUCHIN V V. Planar dual-frequency quasi-yagi antenna[J]. Electromagnetics, 2016, 36(5): 328-339.
[12] [12] CHU Q X, LI X R, YE M. High gain printed log-periodic dipole array antenna with parasitic cell for 5G communication[J]. IEEE transactions on antennas & propagation, 2017, 65(12): 6338-6344.
[13] [13] REBOLLO A, GONZALO R, EDERRA I. Full W-band microstrip fed vivaldi antenna[J]. Journal of infrared, millimeter, and terahertz waves, 2016, 37(8): 786-794.
[14] [14] WANG Y, AO M, SU J, et al. An ultra-wideband triple-polarization reconfigurable vivaldi array antenna[J]. International journal of electronics and communications, 2025, 188(01): 155575.
[15] [15] YIN J, BAO D, REN J, et al. Endfire radiations of spoof surface plasmon polaritons[J]. IEEE antennas and wireless propagation letters, 2017, 16: 597-600.
[16] [16] TIAN D, RAN X, PENG G, et al. Low-profile high-efficiency bidirectional endfire antenna based on spoof surface plasmon polaritons[J]. IEEE antennas and wireless propagation letters, 2018, 17(5): 837-840.
[17] [17] FU Q F, NI H, LUO G Q, et al. A high aperture efficiency endfire antenna based on spoof surface plasmon polaritons[J]. IEEE transactions on antennas and propagation, 2023, 71(1): 50-57.
[18] [18] DU X, LI H, YIN Y. Wideband fish-bone antenna utilizing odd-mode spoof surface plasmon polaritons for end-fire radiation[J]. IEEE transactions on antennas and propagation, 2019, 67(7): 4848-4853.
[19] [19] GE S K, ZHANG Q F, RASHID A K, et al. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation[J]. IEEE transactions on antennas and propagation, 2019, 67(11): 7133-7138.
[20] [20] XIAO M R, RASHID A K, LIU B Y, et al. Design of high-gain single-layer endfire antenna using phase-reversed asymmetric spoof surface plasmon polaritons[J]. IEEE antennas and wireless propagation letters, 2023, 22(3): 641-644.
[21] [21] HAN Y J, GONG S H, WANG J F, et al. Shared-aperture antennas based on even- and odd-mode spoof surface plasmon polaritons[J]. IEEE transactions on antennas and propagation, 2020, 68(4): 3254-3258.
[22] [22] QU B Y, YAN S, ZHANG A X, et al. Shared-aperture antennas based on mode modulation of a patch antenna and spoof surface plasmon polaritons[J]. Journal of physics D-applied physics, 2022, 55(4): 045002.
[23] [23] TIAN D, KIANINEJAD A, SHI T, et al. Compact dual-band high-efficiency antennas based on spoof surface plasmon polaritons[J]. IEEE transactions on antennas and propagation, 2023, 71(1): 1075-1080.
[24] [24] SARKAR S, GUPTA B. A tri-band spoof surface plasmon polaritons based antenna for endfire radiation[J]. International journal of RF and microwave computer-aided engineering, 2021, 31(7): e22668.
[25] [25] YIN J Y, YIN T, DU X Y, et al. Efficient conversion from spoof surface plasmon polaritons to radiation mode[J]. Applied optics, 2021, 60(12): 3374-3379.
Get Citation
Copy Citation Text
BAI Yukun, MAO Mengqun. A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator[J]. Optoelectronics Letters, 2025, 21(8): 462
Received: Jul. 28, 2023
Accepted: Jul. 24, 2025
Published Online: Jul. 24, 2025
The Author Email: