Chinese Journal of Lasers, Volume. 36, Issue 3, 547(2009)
Advances of Silicon-Based Integrated Photonic Devices and Applications in Optical Gyroscope and Optical Communication
[1] [1] B. Jalali, S. Fathpour. Silicon photonics[J].J. Lightwave Technol., 2006, 24(12): 4600~4615
[2] [2] A. S. Liu, M. Paniccia. Advances in silicon photonic devices for silicon-based optoelectronic applications[J].Phys. E, 2006, 35(2): 223~228
[3] [3] M. Lipsor. Guiding, modulating, and emitting light on silicon - challenges and opportunities[J].J. Lightwave Technol., 2005, 23(12): 4222~4238
[4] [4] A.Polman, F. van Veggel. Broadband sensitizers for erbium-doped planar optical amplifiers: review[J]. J. Opt. Soc. Am. B, 2004, 21(5): 871~892
[5] [5] N.Paniccia, M. Morse, M. Salib. Integrated Photonics, in Silicon Photonics[M]. Berlin: Springer-Verlag Berlin,2004, 51~88
[6] [6] L T.Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett., 1990, 57(10): 1046~1048
[7] [7] A. G.Cullis, L. T. Canham. Visible-light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353(6342): 335~338
[8] [8] N. Koshida, H. Koyama.Visible electroluminescence from porous silicon[J]. Appl. Phys. Lett., 1992, 60(3): 347~349
[9] [9] S.Godefroo, M. Hayne, M. Jivanescu et al.. Classification and control of the origin of photoluminescence from Si nanocrystals[J].Nat. Nanotechnol., 2008, 3(3): 174~178
[10] [10] A. D.Yoffe. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems[J]. Adv. Phys., 2001, 50(1): 1~208.
[11] [11] L.Tsybeskov, S. P. Duttagupta, K.D. Hirschman et al.. Room-temperature photoluminescence and electroluminescence from Er-doped silicon-rich silicon oxide[J]. Appl. Phys. Lett., 1997, 70(14): 1790~1792
[12] [12] F.Iacona, D. Pacifici, A. Irrera et al.. Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices[J]. Appl. Phys. Lett., 2002, 81(17): 3242~3244
[13] [13] K.Suh, J. H. Shin, S. J. Seo et al.. Er3+ luminescence and cooperative upconversion in ErxY2-xSiO5 nanocrystal aggregates fabricated using Si nanowires[J]. Appl. Phys. Lett., 2008, 92(12): 121910-1~121910-3
[14] [14] G. N.Van den Hoven, R. Koper, A. Polman et al.. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon[J]. Appl. Phys. Lett., 1996, 68(14): 1886~1888
[15] [15] L.Pavesi, L. Dal Negro, C. Mazzoleni et al.. Optical gain in silicon nanocrystals[J]. Nature, 2000, 408(6811): 440~444
[16] [16] H. S.Han, S. Y. Seo, J. H. Shin et al.. Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier[J]. Appl. Phys. Lett., 2002, 81(20): 3720~3722
[17] [17] P. G.Kik, A. Polman. Erbium doped optical-waveguide amplifiers on silicon[J]. MRS Bull., 1998, 23(4): 48~54
[18] [18] J.Lee, J. H. Shin, N. Park. Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs[J]. J. Lightwave Technol., 2005, 23(1): 19~25
[19] [19] X.Orignac, D. Barbier, X. M. Du et al.. Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm[J]. Opt. Mater., 1999, 12(1): 1~18
[20] [20] S. G.Cloutier, P. A. Kossyrev, J. Xu. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon[J]. Nat. Mater., 2005, 4(12): 887~891
[21] [21] R.Claps, V. Raghunathan, D. Dimitropoulos et al.. Influence of nonlinear absorption on Raman amplification in silicon waveguides[J]. Opt. Express, 2004, 12(12): 2774~2780
[22] [22] R. L.Espinola, J. I. Dadap, R. M. Osgood et al.. Raman amplification in ultrasmall silicon-on-insulator wire waveguides[J]. Opt. Express, 2004, 12(16): 3713~3718
[23] [23] M. A.Foster, A. C. Turner, J. E. Sharping et al.. Broad-band optical parametric gain on a silicon photonic chip[J]. Nature, 2006, 441(7096): 960~963
[24] [24] T. K.Liang, H. K. Tsang. Efficient Raman amplification in silicon-on-insulator waveguides[J]. Appl. Phys. Lett., 2004, 85(16): 3343~3345
[25] [25] T. K.Liang, H. K. Tsang. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides[J]. Appl. Phys. Lett., 2004, 84(15): 2745~2747
[26] [26] O.Boyraz, B. Jalali. Demonstration of a silicon Raman laser[J]. Opt. Express, 2004, 12(21): 5269~5273
[27] [27] H. S.Rong, R. Jones, A. S. Liu et al.. A continuous-wave Raman silicon laser[J]. Nature, 2005, 433(7027): 725~728
[28] [28] J. H.Park, A. J. Steckl. Demonstration of a visible laser on silicon using Eu-doped GaN thin films[J]. J. Appl. Phys., 2005, 98(5): 056108
[29] [29] H. S.Rong, S. B. Xu, O. Cohen et al.. A cascaded silicon Raman laser[J]. Nat. Photonics, 2008, 2(3): 170~174
[30] [30] A. W.Fang, H. Park, O. Cohen et al.. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Opt. Express, 2006, 14(20): 9203~9210
[31] [31] A.Polman, B. Min, J. Kalkman et al.. Ultralow-threshold erbium-implanted toroidal microlaser on silicon[J]. Appl. Phys. Lett., 2004, 84(7): 1037~1039
[33] [33] E. L.Wooten, K. M. Kissa, A. Yi Yan et al.. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(1): 69~82
[35] [35] A. S.Liu, R. Jones, L. Liao et al.. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427(6975): 615~618
[36] [36] C. K.Tang, G. T. Reed. Highly efficient optical-phase modulator in SOI wave-guides[J].Electron. Lett., 1995, 31(6): 451~452
[37] [37] P.Dainesi, A. Kung, M. Chabloz et al.. CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology[J]. IEEE Photon. Technol. Lett., 2000, 12(6): 660~662
[38] [38] L.Liao, D. Samara-Rubio, M. Morse et al.. High speed silicon Mach-Zehnder modulator[J]. Opt. Express, 2005, 13(8): 3129~3135
[39] [39] A. S.Liu, L. Liao, D. Rubin et al.. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Opt. Express, 2007, 15(2): 660~668
[40] [40] L.Liao, A. Liu, D. Rubin et al.. 40 Gbit/s silicon optical modulator for highspeed applications[J]. Electron. Lett., 2007, 43(22): 1196~1197
[41] [41] Q. F.Xu, B. Schmidt, S. Pradhan et al.. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040): 325~327
[42] [42] S. R.Preble, Q. F. Xu, B S. Schmidt et al.. Ultrafast all-optical modulation on a silicon chip[J]. Opt. Lett., 2005, 30(21): 2891~2893
[43] [43] K.Preston, P. Dong, B. Schmidt et al.. High-speed all-optical modulation using polycrystalline silicon microring resonators[J]. Appl. Phys. Lett., 2008, 92(15): 151104-1~151104-3
[44] [44] B.Mason, A. Ougazzaden, C. W. Lentz et al.. 40-Gb/s tandem electroabsorption modulator[J]. IEEE Photon. Technol. Lett., 2002, 14(1): 27~29
[45] [45] Y. Q.Jiang, W. Jiang, L. L. Gu et al.. 80-micron interaction length silicon photonic crystal waveguide modulator[J]. Appl. Phys. Lett., 2005, 87(22): 3
[46] [46] W.Jiang, L. Gu, X. Chen et al.. Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress[J]. Solid-State Electron., 2007, 51(10): 1278~1286
[47] [47] Y.Enami, C. T. Derose, D. Mathine et al.. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients[J]. Nat. Photonics, 2007, 1(3): 180~185
[48] [48] P.Mottier, P. Pouteau. Solid state optical gyrometer integrated on silicon[J]. Electron. Lett., 1997, 33(23): 1975~1977
[49] [49] K.Suzuki, K. Takiguchi, K. Hotate. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J]. J. Lightwave Technol., 2000, 18(1): 66~72
[50] [50] H. L.Ma, X. L. Zhang, Z. H. Jin et al.. Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique[J]. Opt. Eng., 2006, 45(8): 080506
[51] [51] M. S.Shahriar, G. S. Pati, R. Tripathi et al.. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light[J]. Phys. Rev. A, 2007, 75(5):053807
[52] [52] J.Yuan, X. W. Long. Optical-axis perturbation in nonplanar ring resonators[J]. Opt. Commun., 2008, 281(5): 1204~1210
[54] [54] H. K.Hsiao, K. A. Winick. Planar glass waveguide ring resonators with gain[J]. Opt. Express, 2007, 15(26): 17783~17797
[55] [55] Z. S. Xiao, R. Serna, C. N. Afonso. Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm[J]. J. Appl. Phys., 2007, 101(3): 033112
[56] [56] Z. S. Xiao, L. Yan, B. Zhou et al.. Optical properties of Tm-Er codoped aluminate glasses[J]. Journal of the Korean Physical Society, 2008, 52: S54~S57
[57] [57] http://www.kotura.com/
[58] [58] C.Gunn. CMOS photonics for high-speed interconnects[J]. IEEE Micro, 2006, 26(2): 58~66
Get Citation
Copy Citation Text
Yan Lu, Xiao Zhisong, Zhang Feng, Zhu Fang, Zhou Bo, Huang Anping, Zhu Yongchang. Advances of Silicon-Based Integrated Photonic Devices and Applications in Optical Gyroscope and Optical Communication[J]. Chinese Journal of Lasers, 2009, 36(3): 547