International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 32003(2025)

Manufacturing high-performance flexible sensors via advanced patterning techniques

Qin Xiaokun, Zhong Bowen, Xu Hao, Jackman Joshua A, Xu Kaichen, Cho Nam-Joon, Lou Zheng, and Wang Lili
References(416)

[1] [1] Culler D, Estrin D and Srivastava M 2004 Guest editors' introduction: overview of sensor networksComputer3741–49

[2] [2] Wilson J S 2004Sensor Technology Handbook(Elsevier)

[3] [3] Currie E H 2021Sensors and Sensing. In Mixed-Signal Embedded Systems Designed E H Currie (Springer)

[4] [4] Nag A, Mukhopadhyay S C and Kosel J 2017 Wearable flexible sensors: a reviewIEEE Sens. J.173949–60

[5] [5] Liu E Z, Cai Z M, Ye Y W, Zhou M Y, Liao H and Yi Y 2023 An overview of flexible sensors: development, application, and challengesSensors23817

[6] [6] Shi Xet al2021 Large-area display textiles integrated with functional systemsNature591240–5

[7] [7] Wang X F, Zhong B W, Lou Z, Han W and Wang L L 2024 The advancement of intelligent dressings for monitoring chronic wound infectionsChem. Eng. J.484149643

[8] [8] Zhang H Cet al2023 Recent advances in nanofiber-based flexible transparent electrodesInt. J. Extrem. Manuf.5032005

[9] [9] Han S T, Peng H Y, Sun Q J, Venkatesh S, Chung K S, Lau S C, Zhou Y and Roy V A L 2017 An overview of the development of flexible sensorsAdv. Mater.291700375

[10] [10] Wang J F, Suo J, Song Z X, Li W J and Wang Z B 2023 Nanomaterial-based flexible sensors for metaverse and virtual reality applicationsInt. J. Extrem. Manuf.5032013

[11] [11] Wang C X, Yin L W, Zhang L Y, Xiang D and Gao R 2010 Metal oxide gas sensors: sensitivity and influencing factorsSensors102088–106

[12] [12] Gauglitz G 2018 Analytical evaluation of sensor measurementsAnal. Bioanal. Chem.4105–13

[13] [13] Steele J J, Taschuk M T and Brett M J 2009 Response time of nanostructured relative humidity sensorsSens. ActuatorsB140610–5

[14] [14] Sun H B, Kuchenbecker K J and Martius G 2022 A soft thumb-sized vision-based sensor with accurate all-round force perceptionNat. Mach. Intell.4135–45

[15] [15] Li J, Bao R R, Tao J, Peng Y Y and Pan C F 2018 Recent progress in flexible pressure sensor arrays: from design to applicationsJ. Mater. Chem.C611878–92

[16] [16] Lian Z X, Zhou J H, Ren W F, Chen F Z, Xu J K, Tian Y L and Yu H D 2024 Recent progress in bio-inspired macrostructure array materials with special wettability—from surface engineering to functional applicationsInt. J. Extrem. Manuf.6012008

[17] [17] Peng S H, Blanloeuil P, Wu S Y and Wang C H 2018 Rational design of ultrasensitive pressure sensors by tailoring microscopic featuresAdv. Mater. Interfaces51800403

[18] [18] Chou H H, Nguyen A, Chortos A, To J W F, Lu C E, Mei J G, Kurosawa T, Bae W G, Tok J B H and Bao Z N 2015 A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensingNat. Commun.68011

[19] [19] Li Z and Suslick K S 2021 The optoelectronic noseAcc. Chem. Res.54950–60

[20] [20] Chen Z H, Fan Q X, Han X Y, Shi G Y and Zhang M 2020 Design of smart chemical ‘tongue’ sensor arrays for pattern-recognition-based biochemical sensing applicationsTrAC Trends Anal. Chem.124115794

[21] [21] Lee J Y, Ju J E, Lee C, Won S M and Yu K J 2024 Novel fabrication techniques for ultra-thin silicon based flexible electronicsInt. J. Extrem. Manuf.6042005

[22] [22] Lee M and Fauchet P M 2007 Two-dimensional silicon photonic crystal based biosensing platform for protein detectionOpt. Express154530–5

[23] [23] Pan H Y, Zhou L H, Zheng W, Liu X H, Zhang J and Pinna N 2023 Atomic layer deposition to heterostructures for application in gas sensorsInt. J. Extrem. Manuf.5022008

[24] [24] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H and Gu Z Z 2009 Encoded porous beads for label-free multiplex detection of tumor markersAdv. Mater.21569–72

[25] [25] Zheng F Y, Cheng Y, Wang J, Lu J, Zhang B, Zhao Y J and Gu Z Z 2014 Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cellsAdv. Mater.267333–8

[26] [26] Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C and Bao Z N 2010 Highly sensitive flexible pressure sensors with microstructured rubber dielectric layersNat. Mater.9859–64

[27] [27] Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y and Ko H 2014 Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skinsACS Nano84689–97

[28] [28] Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E and Bao Z N 2014 Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronicsAdv. Funct. Mater.245427–34

[29] [29] Park J, Kim Y S and Hammond P T 2005 Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard moldsNano Lett.51347–50

[30] [30] Sayed S and Selvaganapathy P R 2022 High-resolution fabrication of nanopatterns by multistep iterative miniaturization of hot-embossed prestressed polymer films and constrained shrinkingMicrosyst. Nanoeng.820

[31] [31] Sayed S and Selvaganapathy P R 2020 Multi-step proportional miniaturization to sub-micron dimensions using pre-stressed polymer filmsNanoscale Adv.25461–7

[32] [32] Kim K K, Ha I, Kim M, Choi J, Won P, Jo S and Ko S H 2020 A deep-learned skin sensor decoding the epicentral human motionsNat. Commun.112149

[33] [33] Li M H, Lu Y, Wang Y J, Huang S and Feng K 2024 Synergistically biomimetic platform that enables droplets to be self-propelledInt. J. Extrem. Manuf.6055503

[34] [34] Wijshoff H 2010 The dynamics of the piezo inkjet printhead operationPhys. Rep.49177–177

[35] [35] Bohandy J, Kim B F and Adrian F J 1986 Metal deposition from a supported metal film using an excimer laserJ. Appl. Phys.601538–9

[36] [36] Li H, Ling J Y, Lin J M, Lu X and Xu W G 2023 Interface engineering in two-dimensional heterostructures towards novel emittersJ. Semicond.44011001

[37] [37] Cooper C and Hughes B 2020 Aerosol jet printing of electronics: an enabling technology for wearable devicesProc. 2020 Pan Pacific Microelectronics Symp.(IEEE) pp 1–11

[38] [38] Taylor G I 1964 Disintegration of water drops in an electric fieldProc. R. Soc.A280383–97

[39] [39] Schirmer N C, Kullmann C, Schmid M S, Burg B R, Schwamb T and Poulikakos D 2010 On ejecting colloids against capillarity from sub-micrometer openings: on-demand dielectrophoretic nanoprintingAdv. Mater.224701–5

[40] [40] Bommineedi L K, Upadhyay N and Minnes R 2023 Screen printing: an ease thin film techniqueSimple Chemical Methods for Thin Film Depositioned B R Sankapal, A Ennaoui, R B Gupta and C D Lokhande (Springer) pp 449–507

[41] [41] Cope B and Kalantzis D 2001Print and Electronic Text Convergence: Technology Drivers Across the Book Production Supply Chain, from Creator to Consumer(Common Ground Publishing)

[42] [42] Podhajny R M 2004 Aniline printing-100 years laterPaper Film Foil Converter7820

[43] [43] Piner R D, Zhu J, Xu F, Hong S and Mirkin C A 1999“Dip-pen”nanolithographyScience283661–3

[44] [44] Kinoshita H 2005 History of extreme ultraviolet lithographyJ. Vac. Sci. Technol.B232584–8

[45] [45] Maldonado J R and Peckerar M 2016 x-ray lithography: some history, current status and future prospectsMicroelectron. Eng.16187–93

[46] [46] Pfeiffer H C 2010 Direct write electron beam lithography: a historical overviewProc. SPIE7823782316

[47] [47] Watt F, Bettiol A A, Van Kan J A, Teo E J and Breese M B H 2005 Ion beam lithography and nanofabrication: a reviewInt. J. Nanosci.4269–86

[48] [48] Quist A P, Pavlovic E and Oscarsson S 2005 Recent advances in microcontact printingAnal. Bioanal. Chem.381591–600

[49] [49] Frank W E and Gibson R J 1954 A new pressure-sensing instrumentJ. Franklin Inst.25821–30

[50] [50] Wang S, Zhou Z, Li B, Wang C and Liu Q 2021 Progresses on new generation laser direct writing techniqueMater. Today Nano16100142

[51] [51] Chou S Y, Krauss P R and Renstrom P J 1995 Imprint of sub-25 nm vias and trenches in polymersAppl. Phys. Lett.673114–6

[52] [52] Jeon H J, Kim K H, Baek Y K, Kim D W and Jung H T 2010 New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale featuresNano Lett.103604–10

[53] [53] Song T E, Oh S A, Ahn C W, Oh I K and Jeon H J 2023 Effective approach for fabricating highly precise high-curvature structural patterns via air-bubble inductionLangmuir3915785–91

[54] [54] Guo M M, Qu Z Y, Min F Y, Li Z, Qiao Y L and Song Y L 2022 Advanced unconventional techniques for sub-100 nm nanopatterningInfoMat4e12323

[55] [55] Luo Y Fet al2023 Technology roadmap for flexible sensorsACS Nano175211–95

[56] [56] Gomes T C, Constantino C J L, Lopes E M, Job A E and Alves N 2012 Thermal inkjet printing of polyaniline on paperThin Solid Films5207200–4

[57] [57] Delrot P, Modestino M A, Gallaire F, Psaltis D and Moser C 2016 Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusingPhys. Rev. Appl.6024003

[58] [58] Chen K K, Jiang E H, Wei X Y, Xia Y, Wu Z Z, Gong Z Y, Shang Z J and Guo S S 2021 The acoustic droplet printing of functional tumor microenvironmentsLab Chip211604–12

[59] [59] Wilkinson N J, Smith M A A, Kay R W and Harris R A 2019 A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturingInt. J. Adv. Manuf. Technol.1054599–619

[60] [60] Park J-Uet al2007 High-resolution electrohydrodynamic jet printingNat. Mater.6782–9

[61] [61] Ng L W T, Hu G H, Howe R C T, Zhu X X, Yang Z Y, Jones C G and Hasan T 2019Printing of Graphene and Related 2D Materials(Springer)

[62] [62] Harrey P M, Evans P S A, Ramsey B J and Harrison D 1999 A novel manufacturing process for capacitors using offset lithographyProc. 1st Int. Symp. on Environmentally Conscious Design and Inverse Manufacturing(IEEE) pp 842–6

[63] [63] Martens J A 1992 Flexographic printing plate processU.S. Patent. No.2047428A1

[64] [64] Liu G Q, Petrosko S H, Zheng Z J and Mirkin C A 2020 Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discoveryChem. Rev.1206009–47

[65] [65] Okazaki S 2015 High resolution optical lithography or high throughput electron beam lithography: the technical struggle from the micro to the nano-fabrication evolutionMicroelectron. Eng.13323–35

[66] [66] Groves T R, Pickard D, Rafferty B, Crosland N, Adam D and Schubert G 2002 Maskless electron beam lithography: prospects, progress, and challengesMicroelectron. Eng.61–62285–93

[67] [67] Melngailis J 1993 Focused ion beam lithographyNucl. Instrum. Methods Phys. Res.B80–811271–80

[68] [68] Tandon U S 1992 An overview of ion beam lithography for nanofabricationVacuum43241–51

[69] [69] Perl A, Reinhoudt D N and Huskens J 2009 Microcontact printing: limitations and achievementsAdv. Mater.212257–68

[70] [70] Tseng A A, Chen K, Chen C D and Ma K J 2003 Electron beam lithography in nanoscale fabrication: recent developmentIEEE Trans. Electron Packag. Manuf.26141–9

[71] [71] Xia Y N and Whitesides G M 1998 Soft lithographyAnnu. Rev. Mater. Sci.28153–84

[72] [72] Kim E, Xia Y N and Whitesides G M 1996 Micromolding in capillaries: applications in materials scienceJ. Am. Chem. Soc.1185722–31

[73] [73] Gates B D, Xu Q B, Stewart M, Ryan D, Willson C G and Whitesides G M 2005 New approaches to nanofabrication: molding, printing, and other techniquesChem. Rev.1051171–96

[74] [74] Kim J O, Kwon S Y, Kim Y, Choi H B, Yang J C, Oh J, Lee H S, Sim J Y, Ryu S and Park S 2019 Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximityACS Appl. Mater. Interfaces111503–11

[75] [75] Min F Yet al2023 Humidity-controlled molecular assembly and photoisomerization behavior with a bubble-assisted patterning approachSmall192301362

[76] [76] Thouti E, Nagaraju A, Chandran A, Prakash P V B S S, Shivanarayanamurthy P, Lal B, Kumar P, Kothari P and Panwar D 2020 Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoringSens. ActuatorsA314112251

[77] [77] Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D and Wei D P 2019 Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodesACS Appl. Mater. Interfaces1114997–5006

[78] [78] Chong T C, Hong M H and Shi L P 2010 Laser precision engineering: from microfabrication to nanoprocessingLaser Photon. Rev.4123–43

[79] [79] Kuscer D, Drnovek S and Levassort F 2021 Inkjet-printing-derived lead-zirconate-titanate-based thick films for printed electronicsMater. Des.198109324

[80] [80] Kamarudin S F, Abdul Aziz N H, Lee H W, Jaafar M and Sulaiman S 2024 Inkjet printing optimization: toward realization of high-resolution printed electronicsAdv. Mater. Technol.92301875

[81] [81] Uddin M J, Hassan J and Douroumis D 2022 Thermal inkjet printing: prospects and applications in the development of medicineTechnologies10108

[82] [82] Zhu W, Ma X Y, Gou M L, Mei D Q, Zhang K and Chen S C 2016 3D printing of functional biomaterials for tissue engineeringCurr. Opin. Biotechnol.40103–12

[83] [83] Wang Y C, Xu C Y, Liu J W, Pan H M, Li Y and Mei D Q 2022 Acoustic-assisted 3D printing based on acousto fluidic microparticles patterning for conductive polymer composites fabricationAddit. Manuf.60103247

[84] [84] Seiti M, Degryse O and Ferraris E 2022 Aerosol Jet®printing 3D capabilities for metal and polymeric inksMater. Today Proc.7038–44

[85] [85] Zhang J, Geng B W, Duan S M, Huang C C, Xi Y, Mu Q, Chen H P, Ren X C and Hu W P 2020 High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodesJ. Mater. Chem.C815219–23

[86] [86] Hyun W J, Lim S, Ahn B Y, Lewis J A, Frisbie C D and Francis L F 2015 Screen printing of highly loaded silver inks on plastic substrates using silicon stencilsACS Appl. Mater. Interfaces712619–24

[87] [87] Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S and Nol V 2022 Challenges, prospects, and emerging applications of inkjet-printed electronics: a chemist's point of viewAngew. Chem., Int. Ed.61e202200166

[88] [88] Kitsomboonloha R, Morris S J S, Rong X Y and Subramanian V 2012 Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printingLangmuir2816711–23

[89] [89] Wen Z X, Liu X Y, Chen W X, Zhou R L, Wu H, Xia Y M and Wu L B 2024 Progress in polyhedral oligomeric silsesquioxane (POSS) photoresists: a comprehensive review across lithographic systemsPolymers16846

[90] [90] Xia D Y, Zhu X L, Khanom F and Runt D 2020 Neon and helium focused ion beam etching of resist patternsNanotechnology31475301

[91] [91] Greer A I Met al2020 Nanopatterned titanium implants accelerate bone formationin vivo ACS Appl. Mater. Interfaces1233541–9

[92] [92] Ito S, Nakamura T and Nakagawa M 2020 Organic–inorganic hybrid replica molds with high mechanical strength for step-and-repeat ultraviolet nanoimprintingBull Chem. Soc. Jpn.93862–9

[93] [93] Sabahi-Kaviani R and Luttge R 2021 Investigating the pattern transfer fidelity of Norland Optical Adhesive 81 for nanogrooves by microtransfer moldingJ. Vac. Sci. Technol.B39062810

[94] [94] Veldhuis S A, George A, Nijland M and ten Elshof J E 2012 Concentration dependence on the shape and size of sol-gel-derived yttria-stabilized zirconia ceramic features by soft lithographic patterningLangmuir2815111–7

[95] [95] Zeng Z F, Shi G, Petrescu F I T, Ungureanu L M and Li Y 2021 Micro-nano machining TiO2 patterns without residual layer by unconventional imprintingAppl. Sci.1110097

[96] [96] He Q X and Tang L H 2022 Sub-5 nm nanogap electrodes towards single-molecular biosensingBiosens. Bioelectron.213114486

[97] [97] Raza A, Saeed Z, Aslam A, Nizami S M, Habib K and Malik A N 2024. Advances, application and challenges of lithography techniquesProc. 2024 5th Int. Conf. on Advancements in Computational Sciences(IEEE) pp 1–6

[98] [98] Li M J, Chen Y L, Luo W X and Cheng X 2021 Interfacial interactions during demolding in nanoimprint lithographyMicromachines12349

[99] [99] Lio G E, Ferraro A, Ritacco T, Aceti D M, De Luca A, Giocondo M and Caputo R 2021 Leveraging on ENZ metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writingAdv. Mater.332008644

[100] [100] Singh M, Haverinen H M, Dhagat P and Jabbour G E 2010 Inkjet printing-process and its applicationsAdv. Mater.22673–85

[101] [101] Lyu Z Y, Wang J L and Chen Y F 2023 4D printing: interdisciplinary integration of smart materials, structural design, and new functionalityInt. J. Extrem. Manuf.5032011

[102] [102] Roy S 2007 Fabrication of micro- and nano-structured materials using mask-less processesJ. Phys. D: Appl. Phys.40R413–R26

[103] [103] Cummins G and Desmulliez M P Y 2012 Inkjet printing of conductive materials: a reviewCircuit World38193–213

[104] [104] Calvert P 2001 Inkjet printing for materials and devicesChem. Mater.133299–305

[105] [105] Fromm J E 1984 Numerical calculation of the fluid dynamics of drop-on-demand jetsIBM J. Res. Dev.28322–33

[106] [106] Jang D, Kim D and Moon J 2009 Influence of fluid physical properties on ink-jet printabilityLangmuir252629–35

[107] [107] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 1997 Capillary flow as the cause of ring stains from dried liquid dropsNature389827–9

[108] [108] Torrisi Fet al2012 Inkjet-printed graphene electronicsACS Nano62992–3006

[109] [109] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applicationsInt. J. Extrem. Manuf.6032011

[110] [110] Shah M A, Lee D G, Lee B Y and Hur S 2021 Classifications and applications of inkjet printing technology: a reviewIEEE Access9140079–102

[111] [111] Kwon K S, Rahman K, Phung T H, Hoath S D, Jeong S and Kim J S 2020 Review of digital printing technologies for electronic materialsFlex. Print. Electron.5043003

[112] [112] Li H Y, Liu J K, Li K and Liu Y X 2019 Piezoelectric micro-jet devices: a reviewSens. ActuatorsA297111552

[113] [113] Zhou Z X, Ruiz Cantu L, Chen X S, Alexander M R, Roberts C J, Hague R, Tuck C, Irvine D and Wildman R 2019 High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulationsAddit. Manuf.29100792

[114] [114] Bernasconi R, Brovelli S, Viviani P, Soldo M, Giusti D and Magagnin L 2022 Piezoelectric drop-on-demand inkjet printing of high-viscosity inksAdv. Eng. Mater.242100733

[115] [115] Chen P H, Chen W C and Chang S H 1997 Bubble growth and ink ejection process of a thermal ink jet printheadInt. J. Mech. Sci.39683–95

[116] [116] Dou C R, Perez V, Qu J, Tsin A, Xu B and Li J Z 2021 A state-of-the-art review of laser-assisted bioprinting and its future research trendsChemBioEng Rev.8517–34

[117] [117] Tsui L K, Ven Chase Kayser S, Strong S A and Lavin J M 2021 High resolution aerosol jet printed components with electrodeposition-enhanced conductanceECS J. Solid State Sci. Technol10047001

[118] [118] Abdolmaleki H, Kidmose P and Agarwala S 2021 Droplet-based techniques for printing of functional inks for flexible physical sensorsAdv. Mater.332006792

[119] [119] Blayo A and Pineaux B 2005 Printing processes and their potential for RFID printingProc. 2005 Joint Conf. on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies(Association for Computing Machinery) pp 27–30

[120] [120] Grau G, Cen J L, Kang H K, Kitsomboonloha R, Scheideler W J and Subramanian V 2016 Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devicesFlex. Print. Electron.1023002

[121] [121] Metters J P, Kadara R O and Banks C E 2011 New directions in screen printed electroanalytical sensors: an overview of recent developmentsAnalyst1361067–76

[122] [122] Setti L, Fraleonimorgera A, Mencarelli I, Filippini A, Ballarin B and Dibiase M 2007 An HRP-based amperometric biosensor fabricated by thermal inkjet printingSens. ActuatorsB126252–7

[123] [123] Sen A K and Darabi J 2007 Droplet ejection performance of a monolithic thermal inkjet print headJ. Micromech. Microeng.171420–7

[124] [124] Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D and Piana C 2005 An amperometric glucose biosensor prototype fabricated by thermal inkjet printingBiosens. Bioelectron.202019–26

[125] [125] Yan J Y, Huang Y and Chrisey D B 2013 Laser-assisted printing of alginate long tubes and annular constructsBiofabrication5015002

[126] [126] Keriquel Vet al2017In situprinting of mesenchymal stromal cells, by laser-assisted bioprinting, forin vivobone regeneration applicationsSci. Rep.71778

[127] [127] Brown M S, Brasz C F, Ventikos Y and Arnold C B 2012 Impulsively actuated jets from thin liquid films for high-resolution printing applicationsJ. Fluid Mech.709341–70

[128] [128] Makrygianni M, Milionis A, Kryou C, Trantakis I, Poulikakos D and Zergioti I 2018 On-demand laser printing of picoliter-sized, highly viscous, adhesive fluids: beyond inkjet limitationsAdv. Mater. Interfaces51800440

[129] [129] Elrod S A, Hadimioglu B, Khuri-Yakub B T, Rawson E G, Richley E, Quate C F, Mansour N N and Lundgren T S 1989 Nozzleless droplet formation with focused acoustic beamsJ. Appl. Phys.653441–7

[130] [130] Hadimioglu B, Elrod S A, Steinmetz D L, Lim M, Zesch J C, Khuri-Yakub B T, Rawson E G and Quate C F 1992 Acoustic ink printingProc. 1992 Ultrasonics Symp. Proc.(IEEE) pp 929–35

[131] [131] Guo Q, Su X, Zhang X G, Shao M C, Yu H X and Li D C 2021 A review on acoustic droplet ejection technology and systemSoft Matter173010–21

[132] [132] Lei Y L and Hu H 2020 SAW-driven droplet jetting technology in micro fluidic: a reviewBiomicro fluidics14061505

[133] [133] McKibben N, Ryel B, Manzi J, Muramutsa F, Daw J, Subbaraman H, Estrada D and Deng Z X 2023 Aerosol jet printing of piezoelectric surface acoustic wave thermometerMicrosyst. Nanoeng.951

[134] [134] Foresti D, Kroll K T, Amissah R, Sillani F, Homan K A, Poulikakos D and Lewis J A 2018 Acoustophoretic printingSci. Adv.4eaat1659

[135] [135] Morales-Rodriguez M E, Joshi P C, Humphries J R, Fuhr P L and Mcintyre T J 2018 Fabrication of low cost surface acoustic wave sensors using direct printing by aerosol inkjetIEEE Access620907–15

[136] [136] Bappy M O, Jiang Q, Atampugre S and Zhang Y L 2024 Aerosol jet printing of high-temperature bimodal sensors for simultaneous strain and temperature sensing using gold and indium tin oxide nanoparticle inksACS Appl. Nano Mater.79453–9

[137] [137] Barton K, Mishra S, Alex Shorter K, Alleyne A, Ferreira P and Rogers J 2010 A desktop electrohydrodynamic jet printing systemMechatronics20611–6

[138] [138] Yin Z P, Wang D Z, Guo Y L, Zhao Z Y, Li L Q, Chen W and Duan Y Q 2024 Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applicationsInfoMat6e12505

[139] [139] Wang D Z, Zhao X J, Lin Y G, Ren T Q, Liang J S, Liu C and Wang L D 2017 Fabrication of micro/nano-structures by electrohydrodynamic jet techniqueFront. Mech. Eng.12477–89

[140] [140] Onses M S, Sutanto E, Ferreira P M, Alleyne A G and Rogers J A 2015 Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printingSmall114237–66

[141] [141] Guo H J, Zou W H, Zhao T M, Liang J W, Zhong Y, Zhou P L, Zhao Y, Liu L Q and Yu H B 2024 Multimodal electrohydrodynamic jet printing-based microstructure-sensitized flexible pressure sensorCompos. Sci. Technol.254110686

[142] [142] Suh J, Han B, Okuyama K and Choi M 2005 Highly charging of nanoparticles through electrospray of nanoparticle suspensionJ. Colloid Interface Sci.287135–40

[143] [143] Mondal K and McMurtrey M D 2020 Present status of the functional advanced micro-, nano-printings—a mini reviewMater. Today Chem.17100328

[144] [144] Ru C H, Luo J, Xie S R and Sun Y 2014 A review of non-contact micro- and nano-printing technologiesJ. Micromech. Microeng.24053001

[145] [145] Chen H P, Yang C M and Lu M S C 2024 Development of a CMOS dielectrophoresis and microbead-based capacitive immunosensor arrayIEEE Sens. J.2423454–61

[146] [146] Harrey P M, Ramsey B J, Evans P S A and Harrison D J 2002 Capacitive-type humidity sensors fabricated using the offset lithographic printing processSens. ActuatorsB87226–32

[147] [147] Nguyen H A D, Lee C, Shin K H and Lee D 2015 An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printingIEEE Trans. Compon. Packag. Manuf. Technol.51516–24

[148] [148] Bariya Met al2018 Roll-to-roll gravure printed electrochemical sensors for wearable and medical devicesACS Nano126978–87

[149] [149] Leach R 2012The Printing Ink Manual4th edn (Springer)

[150] [150] Tudorache M and Bala C 2007 Biosensors based on screen-printing technology, and their applications in environmental and food analysisAnal. Bioanal. Chem.388565–78

[151] [151] Beniwal A, Ganguly P, Aliyana A K, Khandelwal G and Dahiya R 2023 Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communicationSens. ActuatorsB374132731

[152] [152] Eigler D M and Schweizer E K 1990 Positioning single atoms with a scanning tunnelling microscopeNature344524–6

[153] [153] Fan P F, Gao J, Mao H, Geng Y Q, Yan Y D, Wang Y Z, Goel S and Luo X C 2022 Scanning probe lithography: state-of-the-art and future perspectivesMicromachines13228

[154] [154] Xie Z, Zhou X C, Tao X M and Zheng Z J 2012 Polymer nanostructures made by scanning probe lithography: recent progress in material applicationsMacromol. Rapid Commun.33359–73

[155] [155] Pires D, Hedrick J L, De Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U and Knoll A W 2010 Nanoscale three-dimensional patterning of molecular resists by scanning probesScience328732–5

[156] [156] Wouters D and Schubert U S 2004 Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devicesAngew. Chem., Int. Ed.432480–95

[157] [157] Wouters D, Hoeppener S and Schubert U S 2009 Local probe oxidation of self-assembled monolayers: templates for the assembly of functional nanostructuresAngew. Chem., Int. Ed.481732–9

[158] [158] Krmer S, Fuierer R R and Gorman C B 2003 Scanning probe lithography using self-assembled monolayersChem. Rev.1034367–418

[159] [159] Song J Q, Liu Z F, Li C Z, Chen H F and He H X 1998 SPM-based nanofabrication using a synchronization techniqueAppl. Phys.A66S715–S7

[160] [160] Bouchiat V and Esteve D 1996 Lift-off lithography using an atomic force microscopeAppl. Phys. Lett.693098–100

[161] [161] Liu X L, Chen K S, Wells S A, Balla I, Zhu J, Wood J D and Hersam M C 2017 Scanning probe nanopatterning and layer-by-layer thinning of black phosphorusAdv. Mater.291604121

[162] [162] Braunschweig A B, Huo F W and Mirkin C A 2009 Molecular printingNat. Chem.1353–8

[163] [163] Saban D, Shamir D, Zohar M and Burg A 2023 Glucose oxidase patterned meta-chemical surface for sensing glucose using dip-pen nanolithographyChemElectroChem10e202300424

[164] [164] Chiu G L T and Shaw J M 1997 Optical lithography: introductionIBM J. Res. Dev.413–6

[165] [165] Yuan H Yet al2024 Spatial and energetic mapping of traps in FeFET during endurance process by advanced trap characterization platformIEEE Electron Device Lett.122371–4

[166] [166] Levinson H J 2005Principles of Lithography2nd edn (SPIE Press)

[167] [167] Harriott L R 2001 Limits of lithographyProc. IEEE89366–74

[168] [168] Ito T and Okazaki S 2000 Pushing the limits of lithographyNature4061027–31

[169] [169] Born M and Wolf E 2013Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Elsevier)

[170] [170] Thompson L F, Willson C G and Bowden M J 1983Introduction to Microlithography: Theory, Materials, and Processing(American Chemical Society)

[171] [171] Pease R F and Chou S Y 2008 Lithography and other patterning techniques for future electronicsProc. IEEE96248–70

[172] [172] Bloomstein T M, Horn M W, Rothschild M, Kunz R R, Palmacci S T and Goodman R B 1997 Lithography with 157 nm lasersJ. Vac. Sci. Technol.B152112–6

[173] [173] Kim J, Yoon Y K and Allen M G 2016 Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabricationJ. Micromech. Microeng.26035003

[174] [174] Sasago M, Endo M, Hirai Y, Ogawa K and Ishihara T 1986 Half-micron photolithography using a KrF excimer laser stepperProc. 1986 International Electron Devices Meeting(IEEE) pp 316–9

[175] [175] Kakizaki K, Saito T, Mitsuhashi K I, Arai M, Tada A, Kasahara S, Igarashi T and Hotta K 2000 High-repetition-rate ArF excimer laser for 193-nm lithographyProc. SPIE40001397–404

[176] [176] Vogler K, Klaft I, Voss F, Bragin I, Bergmann E, Nagy T, Niemoeller N, Paetzel R, Govorkov S V and Hua G X 2001 Advanced F2-lasers for 157-nm lithographyProc. SPIE43461175–82

[177] [177] Li Z W, Zhang J F, Zheng Z P, Feng P F, Yu D W and Wang J J 2024 Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surfaceInt. J. Extrem. Manuf.6025102

[178] [178] Cerrina F 2000 x-ray imaging: applications to patterning and lithographyJ. Phys. D: Appl. Phys.33R103–R16

[179] [179] Xu Pet al2024 Demonstration of large MW and prominent endurance in a Hf0.5Zr0.5O2 FeFET with IGZO channel utilizing postdeposition annealingIEEE Electron Device Lett.452110–3

[180] [180] Wang Yet al2023 A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive fieldScience381558–63

[181] [181] Feng Z F, Giubertoni D, Cian A, Valt M, Ardit M, Pedrielli A, Vanzetti L, Fabbri B, Guidi V and Gaiardo A 2023 Fabrication of a highly NO2-sensitive gas sensor based on a defective ZnO nanofilm and using electron beam lithographyMicromachines141908

[182] [182] Groves T R 2014 Electron beam lithographyNanolithographyed M Feldman (Woodhead Publishing) pp 80–115

[183] [183] Cui B 2011Recent Advances in Nanofabrication Techniques and Applications(IntechOpen)

[184] [184] Joshi-Imre A and Bauerdick S 2014 Direct-write ion beam lithographyJ. Nanotechnol.2014170415

[185] [185] Gao M 2016Direct-Writing Nanolithography(Chemical Industry Press) (https://doi.org/10.1002/9783527696406.ch10)

[186] [186] Kang H, Joo H, Choi J, Kim Y J, Lee Y, Cho S Y and Jung H T 2022 Top-down approaches for 10 nm-scale nanochannel: toward exceptional H2S detectionACS Nano1617210–9

[187] [187] Petrzelka J E and Hardt D E 2012 Static load-displacement behavior of PDMS microfeatures for soft lithographyJ. Micromech. Microeng.22075015

[188] [188] Wissman J, Lu T and Majidi C 2013 Soft-matter electronics with stencil lithographyProc. Sensors, 2013 IEEE(IEEE) pp 1–4

[189] [189] Chen H P, Lentz D M, Rhoades A M, Pyles R A, Haider K W, Vanapalli S A, Nunley R K and Hedden R C 2012 Surface infusion micropatterning of elastomeric substratesMicrofluid. Nanofluid.12451–64

[190] [190] Rolland J P, Hagberg E C, Denison G M, Carter K R and De Simone J M 2004 High-resolution soft lithography: enabling materials for nanotechnologiesAngew. Chem., Int. Ed.435796–9

[191] [191] Rogers J A and Nuzzo R G 2005 Recent progress in soft lithographyMater. Today850–56

[192] [192] Qin D, Xia Y N and Whitesides G M 2010 Soft lithography for micro- and nanoscale patterningNat. Protocols5491–502

[193] [193] Larsen N B, Biebuyck H, Delamarche E and Michel B 1997 Order in microcontact printed self-assembled monolayersJ. Am. Chem. Soc.1193017–26

[194] [194] Du B R, Lu J Y, Wang G T, Han M G, Gao Y and Luo S D 2024 Combined laser-induced graphene and microcontact printing for processing scalable and stackable micro-stripe patterns toward multifunctional electronic devicesCarbon225119148

[195] [195] Poirier G E, Tarlov M J and Rushmeier H E 1994 Two-dimensional liquid phase and thepx√3 phase of alkanethiol self-assembled monolayers on Au(111)Langmuir103383–6

[196] [196] Torres C M S 2012Alternative Lithography: Unleashing the Potentials of Nanotechnology(Springer)

[197] [197] Helmuth J A, Schmid H, Stutz R, Stemmer A and Wolf H 2006 High-speed microcontact printingJ. Am. Chem. Soc.1289296–7

[198] [198] Brehmer M, Conrad L and Funk L 2003 New developments in soft lithographyJ. Dispersion Sci. Technol.24291–304

[199] [199] Xia Y N, Kim E, Zhao X M, Rogers J A, Prentiss M and Whitesides G M 1996 Complex optical surfaces formed by replica molding against elastomeric mastersScience273347–9

[200] [200] Dervisevic M, Jara Fornerod M J, Harberts J, Zangabad P S and Voelcker N H 2024 Wearable microneedle patch for transdermal electrochemical monitoring of urea in interstitial fluidACS Sens.9932–41

[201] [201] Zhao X M, Xia Y N and Whitesides G M 1996 Fabrication of three-dimensional micro-structures: microtransfer moldingAdv. Mater.8837–40

[202] [202] Park M J, Choi W M and Park O O 2006 Patterning polymer light-emitting diodes by micromolding in capillaryCurr. Appl. Phys.6627–31

[203] [203] Heule M and Gauckler L J 2003 Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillariesSens. ActuatorsB93100–6

[204] [204] King E, Xia Y N, Zhao X M and Whitesides G M 1997 Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymersAdv. Mater.9651–4

[205] [205] Wang S Let al2023 Body-area sensor network featuring micropyramids for sports healthcareNano Res.161330–7

[206] [206] Hassanin H and Jiang K 2011 Multiple replication of thick PDMS micropatterns using surfactants as release agentsMicroelectron. Eng.883275–7

[207] [207] Qi J L, Wu Z X, Wang W B, Bao K, Wang L Z, Wu J K, Ke C X, Xu Y and He Q Y 2023 Fabrication and applications of van der Waals heterostructuresInt. J. Extrem. Manuf.5022007

[208] [208] Pattnaik S, Karunakar D B and Jha P K 2012 Developments in investment casting process—A reviewJ. Mater. Process. Technol.2122332–48

[209] [209] Li T, Xu Z Z, Xu B B, Guo Z H, Jiang Y H, Zhang X H, Bayati M, Liu T X and Liu Y H 2023 Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens arrayNano Res.1610493–9

[210] [210] Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira E M S, Lima R and Minas G 2022 Properties and applications of PDMS for biomedical engineering: a reviewJ. Funct. Biomater.132

[211] [211] Alderighi T, Malomo L, Auzinger T, Bickel B, Cignoni P and Pietroni N 2022 State of the art in computational mould designComput. Graph. Forum41435–52

[212] [212] Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-sayari S, Kim D E, Kim D and Lee T 2016 Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensingAdv. Electron. Mater.21600356

[213] [213] Zhang X F, Tang G L, Yang S H and Benattar J J 2010 Two-dimensional self-assemblies of silica nanoparticles formed using the “bubble deposition technique”Langmuir2616828–32

[214] [214] Tang G L, Zhang X F, Yang S H, Derycke V and Benattar J J 2010 New confinement method for the formation of highly aligned and densely packed single-walled carbon nanotube monolayersSmall61488–91

[215] [215] Qu Zet al2023 Bubble wall confinement-driven molecular assembly toward sub-12 nm and beyond precision patterningSci. Adv.9eadf3567

[216] [216] Wang L Y, Wang Z W, Bakhtiyari A N and Zheng H Y 2020 A comparative study of laser-induced graphene by CO2 infrared laser and 355 nm ultraviolet (UV) laserMicromachines111094

[217] [217] Yin B S, Liu F R, Chen Q Y, Liu M and Wang F Y 2024 Flexible strain sensors based on bionic parallel vein-like structures for human motion monitoringSensors24468

[218] [218] Schallenberg T, Schumacher C, Gundel S and Faschinger W 2002 Shadow mask technologyThin Solid Films41224–29

[219] [219] Tixier A, Mita Y, Gouy J P and Fujita H 2000 A silicon shadow mask for deposition on isolated areasJ. Micromech. Microeng.10157–62

[220] [220] Nouhi A, Sookhak Lari M R, Spelt J K and Papini M 2015 Implementation of a shadow mask for direct writing in abrasive jet micro-machiningJ. Mater. Process. Technol.223232–9

[221] [221] Ren X C, Pei K, Peng B Y, Zhang Z C, Wang Z R, Wang X Y and Chan P K L 2016 A low-operating-power and flexible active-matrix organic-transistor temperature-sensor arrayAdv. Mater.284832–8

[222] [222] Resnick D 2014 Nanoimprint lithographyNanolithographyed M Feldman (Woodhead Publishing) pp 315–47

[223] [223] Wu D X, Rajput N S and Luo X C 2016 Nanoimprint lithography—the past, the present and the futureCurr. Nanosci.12712–24

[224] [224] Fan Y, Wang C H, Sun J X, Peng X G, Tian H M, Li X M, Chen X L, Chen X M and Shao J Y 2023 Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped waferInt. J. Extrem. Manuf.5035101

[225] [225] Chou S Y, Krauss P R and Renstrom P J 1996 Nanoimprint lithographyJ. Vac. Sci. Technol.B144129–33

[226] [226] Nie Z H and Kumacheva E 2008 Patterning surfaces with functional polymersNat. Mater.7277–90

[227] [227] Zanut A, Cian A, Cefarin N, Pozzato A and Tormen M 2020 Nanoelectrode arrays fabricated by thermal nanoimprint lithography for biosensing applicationBiosensors1090

[228] [228] Alkaisi M M, Blaikie R J, McNab S J, Cheung R and Cumming D R S 1999 Sub-diffraction-limited patterning using evanescent near-field optical lithographyAppl. Phys. Lett.753560–2

[229] [229] Wang J S, Fang F Z, An H J, Wu S, Qi H M, Cai Y X and Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scalesInt. J. Extrem. Manuf.5012005

[230] [230] Thiel M, Fischer J, von Freymann G and Wegener M 2010 Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nmAppl. Phys. Lett.97221102

[231] [231] Zhou J, Shen H, Pan Y Q and Ding X H 2016 Experimental study on laser microstructures using long pulseOpt. Lasers Eng.78113–20

[232] [232] Kiisk V, Kahro T, Kozlova J, Matisen L and Alles H 2013 Nanosecond laser treatment of grapheneAppl. Surf. Sci.276133–7

[233] [233] Audouard E and Mottay E 2023 High efficiency GHz laser processing with long burstsInt. J. Extrem. Manuf.5015003

[234] [234] Li X R, Zhang B Y, Jakobi T, Yu Z L, Ren L Q and Zhang Z H 2024 Laser-based bionic manufacturingInt. J. Extrem. Manuf.6042003

[235] [235] Cui S Y, Lu Y Y, Kong D P, Luo H Y, Peng L, Yang G, Yang H Y and Xu K C 2023 Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensorsOpto-Electron. Adv.6220172

[236] [236] Luo Y, Miao Y P, Wang H M, Dong K, Hou L, Xu Y Y, Chen W C, Zhang Y, Zhang Y and Fan W 2023 Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting fieldNano Res.167600–8

[237] [237] Chu G L, Zhang Y Y, Zhou Z R, Zeng W X, Chen D F, Yu S P, Wang J M, Guo Y M, Sun X and Li M 2023 Rapid CO2-laser scribing fabrication of an electrochemical sensor for the direct detection of Pb2+ and Cd2+Nano Res.167671–81

[238] [238] Lin J, Peng Z W, Liu Y Y, Ruiz-Zepeda F, Ye R Q, Samuel E L G, Yacaman M J, Yakobson B I and Tour J M 2014 Laser-induced porous graphene films from commercial polymersNat. Commun.55714

[239] [239] Xu K Cet al2023 Laser direct writing of flexible thermal flow sensorsNano Lett.2310317–25

[240] [240] Yang Let al2022 Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymersACS Appl. Mater. Interfaces1417818–25

[241] [241] Lu Y Yet al2024 Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronicsNat. Electron.751–65

[242] [242] Zhong B W, Xu H, Qin X K, Liu L C, Wang H L and Wang L L 2024 A crosstalk-free dual-mode sweat sensing system for naked-eye sweat loss quantification via changes in structural reflectanceBio-Des. Manuf.7428–38

[243] [243] Shaheen M E, Gagnon J E and Fryer B J 2013 Laser ablation of iron: a comparison between femtosecond and picosecond laser pulsesJ. Appl. Phys.114083110

[244] [244] Chichkov B N, Momma C, Nolte S, von Alvensleben F and Tnnermann A 1996 Femtosecond, picosecond and nanosecond laser ablation of solidsAppl. Phys.A63109–15

[245] [245] Son S, Park J E, Lee J, Yang M Y and Kang B 2016 Laser-assisted fabrication of single-layer flexible touch sensorSci. Rep.634629

[246] [246] Li Z Y, Zhang B, Li K, Zhang T and Yang X N 2020 A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures via laser markingJ. Mater. Chem.C83088–96

[247] [247] Huang Y S, Chen K Y, Cheng Y T, Lee C K and Tsai H E 2020 An inkjet-printed flexible non-enzymatic lactate sensor for clinical blood plasma testIEEE Electron Device Lett.41597–600

[248] [248] Zhou Ket al2023 Manufacturing of graphene based synaptic devices for optoelectronic applicationsInt. J. Extrem. Manuf.5042006

[249] [249] Gao L, Wu M G, Yu X G and Yu J S 2024 Device design principles and bioelectronic applications for flexible organic electrochemical transistorsInt. J. Extrem. Manuf.6012005

[250] [250] Khan Y, Thielens A, Muin S, Ting J, Baumbauer C and Arias A C 2020 A new frontier of printed electronics: flexible hybrid electronicsAdv. Mater.321905279

[251] [251] Marquez Cet al2023 Direct ink-write printing of ceramic clay with an embedded wireless temperature and relative humidity sensorSensors233352

[252] [252] Sui Y K and Zorman C A 2020 Review—inkjet printing of metal structures for electrochemical sensor applicationsJ. Electrochem. Soc.167037571

[253] [253] Jung W B, Jang S, Cho S Y, Jeon H J and Jung H T 2020 Recent progress in simple and cost-effective top-down lithography for≈10 nm scale nanopatterns: from edge lithography to secondary sputtering lithographyAdv. Mater.321907101

[254] [254] Salim A and Lim S 2017 Review of recent inkjet-printed capacitive tactile sensorsSensors172593

[255] [255] Huang Y Qet al2024 Deep insights into the mechanism of nitrogen on the endurance enhancement in ferroelectric field effect transistors: trap behavior during memory window degradationAppl. Phys. Lett.124133504

[256] [256] Lawson R A and Robinson A P G 2016 Overview of materials and processes for lithographyFront. Nanosci.111–90

[257] [257] Hasan R M M and Luo X 2018 Promising lithography techniques for next-generation logic devicesNanomanuf. Metrol.167–81

[258] [258] Giannopoulos I, Mochi I, Vockenhuber M, Ekinci Y and Kazazis D 2024 Extreme ultraviolet lithography reaches 5 nm resolutionNanoscale1615533–43

[259] [259] Zhang J H and Yang B 2010 Patterning colloidal crystals and nanostructure arrays by soft lithographyAdv. Funct. Mater.203411–24

[260] [260] Moonen P F, Yakimets I and Huskens J 2012 Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategiesAdv. Mater.245526–41

[261] [261] Mackenzie D M A, Smistrup K, Whelan P R, Luo B R, Shivayogimath A, Nielsen T, Petersen D H, Messina S A and Bggild P 2017 Batch fabrication of nanopatterned graphene devices via nanoimprint lithographyAppl. Phys. Lett.111193103

[262] [262] Ifuku Tet al2024 Nanoimprint lithography performance advances for new application spacesProc. SPIE129561295603

[263] [263] Nakayama T, Yonekawa M, Matsuoka Y, Azuma H, Takabayashi Y, Aghili A, Mizuno M, Choi J and Jones C E 2017 Improved defectivity and particle control for nanoimprint lithography high-volume semiconductor manufacturingProc. SPIE101441014407

[264] [264] Schift H and Kristensen A 2017 Nanoimprint lithographySpringer Handbook of Nanotechnologyed B Bhushan (Springer)

[265] [265] Martinez-Perdiguero J, Retolaza A, Otaduy D, Juarros A and Merino S 2013 Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithographySensors1313960–8

[266] [266] Stratakis E, Ranella A, Farsari M and Fotakis C 2009 Laser-based micro/nanoengineering for biological applicationsProg. Quantum Electron.33127–63

[267] [267] Lu Y Y, Kong D P, Yang G, Wang R H, Pang G Y, Luo H Y, Yang H Y and Xu K C 2023 Machine learning-enabled tactile sensor design for dynamic touch decodingAdv. Sci.102303949

[268] [268] Wang L H, Liu J X, Qi X J, Zhang X J, Wang H, Tian M W and Qu L J 2024 Flexible micro/nanopatterned pressure tactile sensors: technologies, morphology and applicationsJ. Mater. Chem.A128065–99

[269] [269] Liu M Met al2023 Patterning two-dimensional semiconductors with thermal etchingInfoMat5e12474

[270] [270] Ma S Met al2024 Ultra-sensitive and stable multiplexed biosensors array in fully printed and integrated platforms for reliable perspiration analysisAdv. Mater.362311106

[271] [271] Shi J D, Wang L, Dai Z H, Zhao L Y, Du M D, Li H B and Fang Y 2018 Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity rangeSmall141800819

[272] [272] pakov B, Lynn N S, Slab J, pov H and Homola J 2018 A route to superior performance of a nanoplasmonic biosensor: consideration of both photonic and mass transport aspectsACS Photonics51019–25

[273] [273] Manfrinato V R, Zhang L H, Su D, Duan H G, Hobbs R G, Stach E A and Berggren K K 2013 Resolution limits of electron-beam lithography toward the atomic scaleNano Lett.131555–8

[274] [274] Liu T S, Chen P, Qiu F, Yang H Y, Jin N T Y, Chew Y, Wang D, Li R D, Jiang Q C and Tan C L 2024 Review on laser directed energy deposited aluminum alloysInt. J. Extrem. Manuf.6022004

[275] [275] Hong M H, Chen Z C, Tang M, Shi L P and Chong T C 2009 Femtosecond laser irradiation for functional micro-/nanostructure fabricationProc. 2009 Conf. on Lasers & Electro Optics & The Pacific Rim Conf. on Lasers and Electro-Optics(IEEE)

[276] [276] Zheng S J, Zhu Y N and Krishnaswamy S 2013 Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratingsSens. ActuatorsB176264–74

[277] [277] Li H H, Zhan Q F, Liu Y W, Liu L P, Yang H L, Zuo Z H, Shang T, Wang B M and Li R W 2016 Stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinklesACS Nano104403–9

[278] [278] Liu G G, Han M and Hou W L 2015 High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Prot cavityOpt. Express237237–47

[279] [279] Sharma R K, Chan P C H, Tang Z N, Yan G Z, Hsing I M and Sin J K O 2001 Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devicesSens. ActuatorsB819–16

[280] [280] Lin L, Xie Y N, Wang S H, Wu W Z, Niu S M, Wen X N and Wang Z L 2013 Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imagingACS Nano78266–74

[281] [281] Saadeldin A S, Hameed M F O, Elkaramany E M A and Obayya S S A 2019 Highly sensitive terahertz metamaterial sensorIEEE Sens. J.197993–9

[282] [282] Li Net al2023 The measurement of responsivity of infrared photodetectors using a cavity blackbodyJ. Semicond.44102301

[283] [283] Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z and Wang L L 2025 A reconfigurable heterostructure transistor array for monocular 3D parallax reconstructionNat. Electron.(https://doi.org/10.1038/s41928-024-01261-6)

[284] [284] Li S X, Xia H, Wang L, Sun X C, An Y, Zhu H, Bai B F and Sun H B 2022 Self-powered and flexible photodetector with high polarization sensitivity based on MAPbBr3–MAPbI3 microwire lateral heterojunctionAdv. Funct. Mater.322206999

[285] [285] Liu F, Piao Y, Choi J S and Seo T S 2013 Three-dimensional graphene micropillar based electrochemical sensor for phenol detectionBiosens. Bioelectron.50387–92

[286] [286] Xu R, Chen C Q, Sun J P, He Y L, Li X, Lu M H and Chen Y F 2023 The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art reviewInt. J. Extrem. Manuf.5042013

[287] [287] Koala R A S D, Fujita M and Nagatsuma T 2022 Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systemsNanophotonics111741–59

[288] [288] Yu H Y, Sun X Y, Liu G L, Fateh U, Ban D S, Deng N P and Qiu F 2021 Gas environment independent temperature sensor via double-metal surface plasmon resonanceOpt. Express2915393–402

[289] [289] Piliarik M, pov H, Kvasnika P, Galler N, Krenn J R and Homola J 2012 High-resolution biosensor based on localized surface plasmonsOpt. Express20672–80

[290] [290] Gao W C, Huang J Y, He J, Zhou R H, Li Z M, Chen Z Y, Zhang Y F and Pan C F 2023 Recent advances in ultrathin materials and their applications in e-skinInfoMat5e12426

[291] [291] Huang X H, Liu L S, Lin Y H, Feng R, Shen Y Y, Chang Y N and Zhao H B 2023 High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructuresSci. Adv.9eadh9799

[292] [292] Zhang Y, Xu Y, Guan S, Zheng J, Gu H, Li L, Xiao R, Fang T, Zou H and Chen X 2023 Modulation bandwidth enhancement in monolithic integrated two-section DFB lasers based on the detuned loading effectJ. Semicond.44112301

[293] [293] Wu W T, Li L L, Li Z X, Sun J Z and Wang L L 2023 Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb healthAdv. Mater.352304596

[294] [294] Li L L, Zhao S F, Ran W H, Li Z X, Yan Y X, Zhong B W, Lou Z, Wang L L and Shen G Z 2022 Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system applicationNat. Commun.135975

[295] [295] Yu Z J, Gao H, Wang Y, Yu Y, Tsang H K, Sun X K and Dai D X 2023 Fundamentals and applications of photonic waveguides with bound states in the continuumJ. Semicond.44101301

[296] [296] Wu L, Ji Y, Dan H Y, Bowen C R and Yang Y 2023 A multifunctional optical-thermal logic gate sensor array based on ferroelectric BiFeO3 thin filmsInfoMat5e12414

[297] [297] Xu C Het al2024 A physicochemical-sensing electronic skin for stress response monitoringNat. Electron.7168–79

[298] [298] Niu H S, Yin F F, Kim E S, Wang W X, Yoon D Y, Wang C, Liang J G, Li Y and Kim N Y 2023 Advances in flexible sensors for intelligent perception system enhanced by artificial intelligenceInfoMat5e12412

[299] [299] Hu W D, Ye Z H, Liao L, Chen H L, Chen L, Ding R J, He L, Chen X S and Lu W 2014 128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talkOpt. Lett.395184–7

[300] [300] Liu W Jet al2023 Integrating 2D layered materials with 3D bulk materials as van der Waals heterostructures for photodetections: current status and perspectivesInfoMat5e12470

[301] [301] Li Y, Yang L, Deng S H, Huang H, Wang Y Y, Xiong Z P, Feng S M, Wang S Q, Li T and Zhang T 2023 A machine learning-assisted multifunctional tactile sensor for smart prostheticsInfoMat5e12463

[302] [302] Ma R, Zhang X D, Sutherland D, Bochenkov V and Deng S K 2024 Nanofabrication of nanostructure lattices: from high-quality large patterns to precise hybrid unitsInt. J. Extrem. Manuf.6062004

[303] [303] Snchez-Pastor J, Kad˘era P, Sakaki M, Jakoby R, Lacik J, Benson N and Jimnez-Sez A 2024 A wireless W-band 3D-printed temperature sensor based on a three-dimensional photonic crystal operating beyond 1000 °CCommun. Eng.3137

[304] [304] Duan Y Q, Xie W S, Yin Z P and Huang Y A 2024 Multi-material 3D nanoprinting for structures to functional micro/nanosystemsInt. J. Extrem. Manuf.6063001

[305] [305] Zheludev N I and Kivshar Y S 2012 From metamaterials to metadevicesNat. Mater.11917–24

[306] [306] Huang Y Het al2023 A direct laser-synthesized magnetic metamaterial for low-frequency wideband passive microwave absorptionInt. J. Extrem. Manuf.5035503

[307] [307] Kumar A, Gupta M, Pitchappa P, Tan T C, Chattopadhyay U, Ducournau G, Wang N, Chong Y D and Singh R 2022 Active ultrahigh-Q(0.2×106) THz topological cavities on a chipAdv. Mater.342202370

[308] [308] Li Z Y, Chang H N, Lai J M, Song F L, Yao Q F, Liu H Q, Ni H Q, Niu Z C and Zhang J 2023 Terahertz phononic crystal in plasmonic nanocavityJ. Semicond.44082901

[309] [309] Chen H T, Cao H Y, Yu Z J, Zhao W K and Dai D X 2023 Waveguide-integrated optical modulators with two-dimensional materialsJ. Semicond.44111301

[310] [310] Zhou W, Shen X Y, Yang X L, Wang J J and Zhang W 2024 Fabrication and integration of photonic devices for phase-change memory and neuromorphic computingInt. J. Extrem. Manuf.6022001

[311] [311] Zhao Y J, Zhao X W and Gu Z Z 2010 Photonic crystals in bioassaysAdv. Funct. Mater.202970–88

[312] [312] Yu Zet al2023 Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug deliveryInfoMat5e12464

[313] [313] Li J X, Madiyar F, Ghate S, Kumar K S and Thomas J 2023 Plasmonic organic electrochemical transistors for enhanced sensingNano Res.163201–6

[314] [314] Peng J P, Liu P J, Chen Y T, Guo Z H, Liu Y H and Yue K 2023 Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substratesNano Res.165056–64

[315] [315] Hu Y D, Hu Y L, Wang Z Y, Yong J L, Xiong W, Wu D and Xu S X 2024 Efficient concentration of trace analyte with ordered hotspot construction for a robust and sensitive SERS platformInt. J. Extrem. Manuf.6035505

[316] [316] Cai M, Jiao Z D, Nie S, Wang C J, Zou J and Song J Z 2021 A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response rangeSci. Adv.7eabl8313

[317] [317] Melik R, Unal E, Kosku Perkgoz N, Puttlitz C and Demir H V 2009 Flexible metamaterials for wireless strain sensingAppl. Phys. Lett.95181105

[318] [318] Choong C-Let al2014 Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid arrayAdv. Mater.263451–8

[319] [319] Chhetry A, Kim J, Yoon H and Park J Y 2019 Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applicationsACS Appl. Mater. Interfaces113438–49

[320] [320] Wan Y B, Qiu Z G, Hong Y, Wang Y, Zhang J M, Liu Q X, Wu Z G and Guo C F 2018 A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructuresAdv. Electron. Mater.41700586

[321] [321] Jing Q S, Choi Y S, Smith M, ati N, Ou C L and Kar-Narayan S 2019 Aerosol-jet printed fine-featured triboelectric sensors for motion sensingAdv. Mater. Technol.41800328

[322] [322] Zhao S F, Ran W H, Wang D P, Yin R Y, Yan Y X, Jiang K, Lou Z and Shen G Z 2020 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronicsACS Appl. Mater. Interfaces1232023–30

[323] [323] Xiong Y X, Shen Y K, Tian L, Hu Y G, Zhu P L, Sun R and Wong C P 2020 A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoringNano Energy70104436

[324] [324] Yang J C, Kim J O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B and Park S 2019 Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperatureACS Appl. Mater. Interfaces1119472–80

[325] [325] Yan Z Get al2021 Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensingAdv. Funct. Mater.312100709

[326] [326] Zhang C J, Li Z K, Li H Y, Yang Q, Wang H, Shan C, Zhang J Z, Hou X and Chen F 2022 Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensorACS Appl. Mater. Interfaces1438328–38

[327] [327] Woo S J, Kong J H, Kim D G and Kim J M 2014 A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductorsJ. Mater. Chem.C24415–22

[328] [328] Li L L, Pan L J, Ma Z, Yan K, Cheng W, Shi Y and Yu G H 2018 All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodesNano Lett.183322–7

[329] [329] Yadav K K, Shamir D, Kornweitz H, Peled Y, Zohar M and Burg A 2024 Development of meta-chemical surface by dip-pen nanolithography for precise electrochemical lead sensingSmall Methods82301118

[330] [330] Xu X L, Peng B, Li D H, Zhang J, Wong L M, Zhang Q, Wang S J and Xiong Q H 2011 Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensingNano Lett.113232–8

[331] [331] Wang D X, Luo S Y and Xu K D 2024 A flexible terahertz metamaterial sensor for pesticide sensing and detectionACS Appl. Mater. Interfaces1627969–78

[332] [332] Liang L Jet al2023 Metamaterial Flexible GaN/graphene heterostructure-enabled multidimensional terahertz sensor for femtogram-level detection of aspartic acidIEEE Sens. J.2316814–22

[333] [333] Yao H Yet al2022 Patterned graphene and terahertz metasurface-enabled multidimensional ultra-sensitive flexible biosensors and bio-assisted optical modulation amplificationResults Phys.40105884

[334] [334] Tao Het al2011 Metamaterials on paper as a sensing platformAdv. Mater.233197–201

[335] [335] He Q Y, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P and Zhang H 2010 Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applicationsACS Nano43201–8

[336] [336] Kim B Y, Lee H B and Lee N E 2019 A durable, stretchable, and disposable electrochemical biosensor on three-dimensional micro-patterned stretchable substrateSens. ActuatorsB283312–20

[337] [337] Saito M, Kitamura A, Murahashi M, Yamanaka K, Hoa L Q, Yamaguchi Y and Tamiya E 2012 Novel gold-capped nanopillars imprinted on a polymer film for highly sensitive plasmonic biosensingAnal. Chem.845494–500

[338] [338] Yao H Z, Mei H Y, Zhang W W, Zhong S C and Wang X F 2022 Theoretical and experimental research on terahertz metamaterial sensor with flexible substrateIEEE Photon. J.143700109

[339] [339] Qin Z Y, Wang P N and Wang Y J 2005 Enhanced sensing performance of the amperometric gas sensor by laser-patterning of the polymer membrane electrodeSens. ActuatorsB107805–11

[340] [340] Li Z, Wang Z W, Khan J, LaGasse M K and Suslick K S 2020 Ultrasensitive monitoring of museum airborne pollutants using a silver nanoparticle sensor arrayACS Sens.52783–91

[341] [341] Lin Y J, Huang L, Chen L, Zhang J K, Shen L, Chen Q and Shi W Z 2015 Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT: PSS nanocomposites and Ag electrodesSens. ActuatorsB216176–83

[342] [342] Kim J W, Porte Y, Ko K Y, Kim H and Myoung J M 2017 Micropatternable double-faced ZnO nanoflowers for flexible gas sensorACS Appl. Mater. Interfaces932876–86

[343] [343] Tang N, Jiang Y, Qu H M and Duan X X 2018 Graphene oxide-doped conducting polymer nanowires fabricated by soft lithography for gas sensing applicationsIEEE Sens. J.187765–71

[344] [344] Wang Q L, Zhang G N, Zhang H Y, Duan Y Q, Yin Z P and Huang Y A 2021 High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based inkAdv. Funct. Mater.312100857

[345] [345] Zumeit A, Dahiya A S, Christou A, Mukherjee R and Dahiya R 2022 Printed GaAs microstructures-based flexible high-performance broadband photodetectorsAdv. Mater. Technol.72200772

[346] [346] Wu W Q, Wang X D, Han X, Yang Z, Gao G Y, Zhang Y F, Hu J F, Tan Y W, Pan A L and Pan C F 2019 Flexible photodetector arrays based on patterned CH3NH3PbI3−xClxperovskite film for real-time photosensing and imagingAdv. Mater.311805913

[347] [347] Lu Q Cet al2023 Large-scale, uniform-patterned CsCu2I3 films for flexible solar-blind photodetectors array with ultraweak light sensingSmall192300364

[348] [348] Choi K H, Zubair M and Dang H W 2014 Characterization of flexible temperature sensor fabricated through drop-on-demand electrohydrodynamics patterningJpn. J. Appl. Phys.5305HB02

[349] [349] Liu Z Jet al2021 A thin-film temperature sensor based on a flexible electrode and substrateMicrosyst. Nanoeng.742

[350] [350] Yan S Z, Shen D D, Newton A A, Zhu S Y and Xin B J 2024 Patterned, flexible, self-supporting humidity sensor with core-sheath structure for real-time sensing of human-related humidityColloids Surf.A695134198

[351] [351] Zhou C, Zhang X S, Tang N, Fang Y, Zhang H N and Duan X X 2020 Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategyNanotechnology31125302

[352] [352] Cai S-Yet al2018 Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: toward an additional perception of artificial intelligenceACS Appl. Mater. Interfaces1017393–400

[353] [353] Wang J, Xu S Y, Zhang C C, Yin A L, Sun M Y, Yang H R, Hu C G and Liu H 2023 Field effect transistor-based tactile sensors: from sensor configurations to advanced applicationsInfoMat5e12376

[354] [354] Qiu A D, Li P L, Yang Z K, Yao Y, Lee I and Ma J 2019 A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensorsAdv. Funct. Mater.291806306

[355] [355] Feng Z P, Hao Y N, Qin J, Zhong S L, Bi K, Zhao Y, Yin L J, Pei J Y and Dang Z M 2023 Ultrasmall barium titanate nanoparticles modulated stretchable dielectric elastomer sensors with large deformability and high sensitivityInfoMat5e12413

[356] [356] Luo Y S, Chen X L, Li X M, Tian H M, Wang L and Shao J Y 2023 A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perceptionNano Res.167550–8

[357] [357] Shi Y Jet al2023 A self-powered piezoelectret sensor based on foamed plastic garbage for monitoring human motionsNano Res.161269–76

[358] [358] Wu M Get al2023 Stretchable, skin-conformable neuromorphic system for tactile sensory recognizing and encodingInfoMat5e12472

[359] [359] Gong W, Hou C Y, Zhou J, Guo Y B, Zhang W, Li Y G, Zhang Q H and Wang H Z 2019 Continuous and scalable manufacture of amphibious energy yarns and textilesNat. Commun.10868

[360] [360] Dai S F, Li X J, Jiang C M, Ping J F and Ying Y B 2023 Triboelectric nanogenerators for smart agricultureInfoMat5e12391

[361] [361] Liu F, Feng Y, Qi Y C, Liu G X, Zhou H, Lin Y, Fan B B, Zhang Z, Dong S C and Zhang C 2023 Self-powered wireless body area network for multi-joint movements monitoring based on contact-separation direct current triboelectric nanogeneratorsInfoMat5e12428

[362] [362] Yang W F, Gong W, Hou C Y, Su Y, Guo Y B, Zhang W, Li Y G, Zhang Q H and Wang H Z 2019 All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortabilityNat. Commun.105541

[363] [363] Yin F F, Niu H S, Kim E S, Shin Y K, Li Y and Kim N Y 2023 Advanced polymer materials-based electronic skins for tactile and non-contact sensing applicationsInfoMat5e12424

[364] [364] Ma H Det al2023 Robust hydrogel sensors for unsupervised learning enabled sign-to-verbal translationInfoMat5e12419

[365] [365] Zhong B Wet al2024 Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolismNat. Commun.15624

[366] [366] Qin X K, Zhong B W, Lv S X, Long X, Xu H, Li L L, Xu K C, Lou Z, Luo Q and Wang L L 2024 A zero-voltage-writing artificial nervous system based on biosensor integrated on ferroelectric tunnel junctionAdv. Mater.362404026

[367] [367] Lee C Wet al2023 Rationally designed graphene channels for real-time sodium ion detection for electronic tongueInfoMat5e12427

[368] [368] Wang M H, Wu P X, Yang S, Wu G L, Li N, Tan X F and Yang Q L 2023 -cyclodextrin-modified AuBi metallic aerogels enable efficient peroxidase mimicking for colorimetric sensing of urease-positive pathogenic bacteriaNano Res.169663–71

[369] [369] Xue H L, Gao W S, Gao J W, Schneider G F, Wang C and Fu W Y 2023 Radiofrequency sensing systems based on emerging two-dimensional materials and devicesInt. J. Extrem. Manuf.5032010

[370] [370] Liu Y Q, Lian M R, Chen W and Chen H P 2024 Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistorInt. J. Extrem. Manuf.6022008

[371] [371] Wu J, Liu H, Chen W W, Ma B and Ju H X 2023 Device integration of electrochemical biosensorsNat. Rev. Bioeng.1346–60

[372] [372] Hu Y X, Zhou Y, Luo G H, Li D G and Qu M N 2024 Femtosecond laser-induced nanoparticle implantation into flexible substrate for sensitive and reusable micro fluidics SERS detectionInt. J. Extrem. Manuf.6045005

[373] [373] Zhu J F, Wang Z Y, Lin S W, Jiang S, Liu X Y and Guo S S 2020 Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor markerBiosens. Bioelectron.150111905

[374] [374] Zhang S Z, Rao S L, Li Y F, Wang S, Sun D Y, Liu F and Cheng G J 2024 Laser-forged transformation and encapsulation of nanoalloys: pioneering robust wideband electromagnetic wave absorption and shielding from GHz to THzInt. J. Extrem. Manuf.6055501

[375] [375] Yu Y C, Joshi P C, Wu J and Hu A M 2018 Laser-induced carbon-based smart flexible sensor array for multiflavors detectionACS Appl. Mater. Interfaces1034005–12

[376] [376] Yang Z, Xu T T, Zhang S B, Li H, Ji Y L, Jia X D and Li J L 2023 Multifunctional N, S-doped and methionine functionalized carbon dots for on-off-on Fe3+ and ascorbic acid sensing, cell imaging, and fluorescent ink applyingNano Res.165401–11

[377] [377] Zhang X Y, Chen P F, He S W X, Jiang B W, Wang Y, Cheng Y H, Peng J, Verpoort F, Wang J and Kou Z K 2023 Single-atom metal-nitrogen-carbon catalysts energize single molecule detection for biosensingInfoMat5e12421

[378] [378] Pasupuleti K S, Chougule S S, Vidyasagar D, Bak N H, Jung N, Kim Y H, Lee J H, Kim S G and Kim M D 2023 UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dotsNano Res.167682–95

[379] [379] Wang Cet al2024 Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arraysNat. Electron.7157–67

[380] [380] Kim Yet al2021 Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platformAdv. Mater.332004827

[381] [381] Li X L, Zhu Y P, Liu Z, Peng L Z, Liu X Q, Niu C Q, Zheng J, Zuo Y H and Cheng B W 2023 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking techniqueJ. Semicond.44012301

[382] [382] Li Z X, Zheng Y Q, Li L L, Liu L C, Lou Z and Wang L L 2024 Parallel photoelectron storage and visual preprocessing based on nanowire defect engineering for image degradationAdv. Funct. Mater.342304119

[383] [383] Tao H Y, Wang T L, Li D Y, Xing J and Li G W 2023 Preparation, properties, and applications of Bi2O2Se thin films: a reviewJ. Semicond.44031001

[384] [384] Tang Y Jet al2023 Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imagingNat. Commun.144961

[385] [385] Yan S L, Huang J L, Xue T, Zhang Y H and Ma W Q 2023 Long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorberJ. Semicond.44042301

[386] [386] He T J, Liu S P, Li W, Zhong L, Ma X Y, Xiong C, Lin N and Wang Z N 2023 Study of quantum well mixing induced by impurity-free vacancy in the primary epitaxial wafers of a 915 nm semiconductor laserJ. Semicond.44102302

[387] [387] Hu W D, Chen X S, Ye Z H and Lu W 2011 A hybrid surface passivation on HgCdTe long wave infrared detector within-situCdTe deposition and high-density hydrogen plasma modificationAppl. Phys. Lett.99091101

[388] [388] Zhong Y J, Fang H Y, Ran Y T and Zhu H W 2023 Fast optical-writing recognition based on two-dimensional photothermoelectric effect assisted with deep learningInfoMat5e12384

[389] [389] Dai W, Liu W K, Yang J, Xu C, Alabastri A, Liu C, Nordlander P, Guan Z Q and Xu H X 2020 Giant photothermoelectric effect in silicon nanoribbon photodetectorsLight Sci. Appl.9120

[390] [390] Dong Zet al2023 Wafer-scale patterned growth of type-II Dirac semimetal platinum ditelluride for sensitive room-temperature terahertz photodetectionInfoMat5e12403

[391] [391] Li L L, Xu H, Li Z X, Liu L C, Lou Z and Wang L L 2023 CMOS-compatible tellurium/silicon ultra-fast near-infrared photodetectorSmall192303114

[392] [392] Long Z H, Ding Y C, Qiu X, Zhou Y, Kumar S and Fan Z Y 2023 A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imagingJ. Semicond.44092604

[393] [393] Qu X Y, Sun H J, Kan X L, Lei B, Shao J J, Wang Q, Wang W J, Ni Z H and Dong X C 2023 Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in “moist/hot environment”Nano Res.1610348–57

[394] [394] Gong Zet al2024 Flexible calorimetric flow sensor with unprecedented sensitivity and directional resolution for multiple flight parameter detectionNat. Commun.153091

[395] [395] Hou C Y and Zhu M F 2022 Semiconductors flex thermoelectric powerScience377815–6

[396] [396] Liu Z J, Tian B, Jiang Z D, Li S M, Lei J M, Zhang Z K, Liu J J, Shi P and Lin Q J 2023 Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °CInt. J. Extrem. Manuf.5015601

[397] [397] Li Z X, Wang J, Dai L, Sun X H, An M, Duan C, Li J and Ni Y H 2020 Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generationACS Appl. Mater. Interfaces1255205–14

[398] [398] Bal M 2014 An industrial Wireless Sensor Networks framework for production monitoringProc. 2014 IEEE 23rd Int. Symp. on Industrial Electronics(IEEE) pp 1442–7

[399] [399] Kozitsina A N, Svalova T S, Malysheva N N, Okhokhonin A V, Vidrevich M B and Brainina K Z 2018 Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysisBiosensors835

[400] [400] Si S H, Dittrich L and Hoffmann M 2017 TheNanoTuFe—fabrication of large area periodic nanopatterns with tunable feature sizes at low costMicroelectron. Eng.18071–80

[401] [401] Scheifele S, Friedrich J, Lechler A and Verl A 2014 Flexible, self-configuring control system for a modular production systemProc. Technol.15398–405

[402] [402] Pang Yet al2018 Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearityACS Nano122346–54

[403] [403] Chen L, Hu Y Z, Huang H X, Liu C, Wu D and Xia J L 2023 Direct laser patterning of organic semiconductors for high performance OFET-based gas sensorsJ. Mater. Chem.C117088–97

[404] [404] Sui X Y, Downing J R, Hersam M C and Chen J H 2021 Additive manufacturing and applications of nanomaterial-based sensorsMater. Today48135–54

[405] [405] Wang X P, Zhang M J, Zhang L W, Xu J C, Xiao X Q and Zhang X S 2022 Inkjet-printed flexible sensors: from function materials, manufacture process, and applications perspectiveMater. Today Commun.31103263

[406] [406] Wang J R, Li Z Y and Gu Z Y 2021 A comprehensive review of template-synthesized multi-component nanowires: from interfacial design to sensing and actuation applicationsSens. Actuators Rep.3100029

[407] [407] Scholz S, Mueller T, Plasch M, Limbeck H, Adamietz R, Iseringhausen T, Kimmig D, Dickerhof M and Woegerer C 2016 A modular flexible scalable and reconfigurable system for manufacturing of Microsystems based on additive manufacturing and e-printingRobot. Comput. Integr. Manuf4014–23

[408] [408] Zhang W L, Schneider J, Prodanov M F, Vashchenko V V, Rogach A L, Yuan X C and Srivastava A K 2023 Photo-induced flexible semiconductor CdSe/CdS quantum rods alignmentJ. Semicond.44092605

[409] [409] Wang Set al2024 Flexible pressure sensors with ultrahigh stress tolerance enabled by periodic microslitsMicrosyst. Nanoeng.1024

[410] [410] Li C and Zheng K 2023 Methods, progresses, and opportunities of materials informaticsInfoMat5e12425

[411] [411] Zhao S F, Ran W H, Lou Z, Li L L, Poddar S, Wang L L, Fan Z Y and Shen G Z 2022 Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devicesNatl Sci. Rev.9nwac158

[412] [412] Hu S Q, Huan X, Liu Y, Cao S X, Wang Z R and Kim J T 2023 Recent advances in meniscus-on-demand three-dimensional micro- and nano-printing for electronics and photonicsInt. J. Extrem. Manuf.5032009

[413] [413] Cai Z Met al2024 Bio-inspired hybrid laser direct writing of interfacial adhesion for universal functional coatingsAdv. Funct. Mater.342408354

[414] [414] Dong C Y, An X, Wu Z C, Zhu Z G, Xie C, Huang J A and Luo L B 2023 Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring abilityJ. Semicond.44112001

[415] [415] Kim Y, Hwang E, Kai C, Xu K C, Pan H and Hong S 2024 Recent developments in selective laser processes for wearable devicesBio-Des. Manuf.7517–47

[416] [416] Xu K C, Cai Z M, Luo H Y, Lin X Y, Yang G, Xie H B, Ko S H and Yang H Y 2024 Anin-situhybrid laser-induced integrated sensor system with antioxidative copperInt. J. Extrem. Manuf.6065501

Tools

Get Citation

Copy Citation Text

Qin Xiaokun, Zhong Bowen, Xu Hao, Jackman Joshua A, Xu Kaichen, Cho Nam-Joon, Lou Zheng, Wang Lili. Manufacturing high-performance flexible sensors via advanced patterning techniques[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 32003

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Jul. 12, 2024

Accepted: Sep. 29, 2025

Published Online: Sep. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ada857

Topics