Chinese Optics, Volume. 15, Issue 4, 812(2022)
Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal
[1] WANG CH, MA H, LI J H, et al. Application of laser self-mixing vibration measurement technique in acoustic resonance landmine detection[J]. Optics and Precision Engineering, 29, 710-720(2021).
[2] GUO T, JI M R, SHEN W, et al. The development of international equipments for non-metal landmine detection[J]. Equipment for Geotechnical Engineering, 11, 29-31,28(2010).
[3] [3] POPOV M O, STANKEVICH S A, MOSOV S P, et al. . Lmine detection with UAVbased optical data fusion[C]. IEEE Eurocon 202119th International Conference on Smart Technologies, IEEE, 2021: 175178.
[4] KHODOR M, MAKKI I, YOUNES R, et al. Landmine detection in hyperspectral images based on pixel intensity[J]. Remote Sensing Applications:Society and Environment, 21, 100468(2021).
[5] ABEDIN A F Z, IBRAHIM N, ZABIDI N A, et al. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection[J]. AIP Conference Proceedings, 1659, 030005(2015).
[6] JAMIL A K M, SIVANESAN A, IZAKE E L, et al. Molecular recognition of 2, 4, 6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor[J]. Sensors and Actuators B:Chemical, 221, 273-280(2015).
[7] GILLANDERS R N, GLACKIN J M, BABIĆ Z, et al. Biomonitoring for wide area surveying in landmine detection using honeybees and optical sensing[J]. Chemosphere, 273, 129646(2021).
[8] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 33, 1482-1498(1962).
[9] SABATIER J M, BASS H E, BOLEN L N, et al. Acoustically induced seismic waves[J]. The Journal of the Acoustical Society of America, 80, 646-649(1986).
[10] SABATIER J M, BASS H E, BOLEN L N, et al. The interaction of airborne sound with the porous ground: the theoretical formulation[J]. The Journal of the Acoustical Society of America, 79, 1345-1352(1986).
[11] XIANG N, SABATIER J M. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling[J]. The Journal of the Acoustical Society of America, 113, 1333-1341(2003).
[12] DONSKOY D. Nonlinear seismo-acoustic landmine detection[J]. The Journal of the Acoustical Society of America, 115, 2382(2004).
[13] DONSKOY D, REZNIK A, ZAGRAI A, et al. Nonlinear vibrations of buried landmines[J]. The Journal of the Acoustical Society of America, 117, 690-700(2005).
[14] ZAGRAI A N, DONSKOY D M, EKIMOV A E. Resonance vibrations of buried landmines[J]. Proceedings of SPIE, 5415, 21-29(2004).
[15] ZAGRAI A N, DONSKOY D M, EKIMOV A E. Structural vibrations of buried land mines[J]. The Journal of the Acoustical Society of America, 118, 3619-3628(2005).
[16] ALBERTS W, SABATIER J M, WAXLER R. Resonance frequency shift saturation in land mine burial simulation experiments[J]. The Journal of the Acoustical Society of America, 120, 1881-1886(2006).
[17] ZHANG Q K, ZHONG SH C, LIN J W, et al. High-performance optical coherence velocimeter: theory and applications[J]. Optics Express, 27, 965-979(2019).
[18] BURGETT R D, BRADLEY M R, DUNCAN M, et al. Mobile mounted laser Doppler vibrometer array for acoustic landmine detection[J]. Proceedings of SPIE, 5089, 665-672(2003).
[19] VALEAU V, SABATIER J, COSTLEY R D, et al. Development of a time-frequency representation for acoustic detection of buried objects[J]. The Journal of the Acoustical Society of America, 116, 2984-2995(2004).
[20] WANG CH, DUAN N Y, WU ZH Q, et al. Method for detecting multi-modal vibration characteristics of landmines[J]. Instrumentation, 5, 39-45(2018).
[21] WU ZH Q, DUAN N Y, WANG CH, et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[J]. Proceedings of SPIE, 10827, 108271W(2018).
[22] [22] RAJESH K R, MURALI R, MOHANACHRAN R. Realisation of ultrasonic Doppler Vibrometer array f lmine detection[C]. 2012 IEEE International Ultrasonics Symposium Proceedings, IEEE, 2012: 10271030.
[23] LI J H, MA H, YANG CH Y, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 14, 487-502(2021).
[24] LV C C, WANG K F, GU G Q, et al. Accurate full-edge detection and depth measurement of internal defects using digital speckle pattern interferometry[J]. NDT & E International, 102, 1-8(2019).
[25] YAN P ZH, WANG Y H, SUN F Y, et al. Shearography for non-destructive testing of specular reflecting objects using scattered light illumination[J]. Optics & Laser Technology, 112, 452-457(2019).
[26] CHAO J, JING W C, XU T H, et al. Electronic speckle-shearing pattern interferometry for vibration analysis[J]. Nanotechnology and Precision Engineering, 4, 58-62(2006).
[27] [27] GOODMAN J W. Introduction to Fourier Optics[M]. New Yk: The McGrawHill Companies, 1968.
[28] ZHANG X Q, WANG CH, LI J H, et al. Use of laser speckle shearing interferometric vibration measurement system for acoustic-to-seismic landmine detection[J]. Optical Engineering, 60, 084102(2021).
[29] FRANCIS D, TATAM R P, GROVES R M. Shearography technology and applications: a review[J]. Measurement Science and Technology, 21, 102001(2010).
Get Citation
Copy Citation Text
Xiao-qing ZHANG, Chi WANG, Jin-hui LI, Xin-yu LUO, Ying-jie YU. Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal[J]. Chinese Optics, 2022, 15(4): 812
Category: Original Article
Received: Jan. 7, 2022
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: Chi WANG (wangchi@shu.edu.cn)