Journal of Beijing Normal University, Volume. 61, Issue 3, 324(2025)
Regulatory mechanism of transcriptional repression of proteasomal ubiquitin receptor Rpn13
[1] [1] GROLL M, DITZEL L, LWE J, et al. Structure of 20S proteasome from yeast at 2.4 resolution[J]. Nature, 1997, 386(6624): 463
[2] [2] GROLL M, BAJOREK M, KHLER A, et al. A gated channel into the proteasome core particle[J]. Nature Structural Biology, 2000, 7(11): 1062
[3] [3] LWE J, STOCK D, JAP B, et al. Crystal structure of the 20S proteasome from the archaeonT. acidophilumat 3.4 resolution[J]. Science, 1995, 268(5210): 533
[4] [4] BARTON L F, RUNNELS H A, SCHELL T D, et al. Immune defects in 28-kDa proteasome activator -deficient mice[J]. Journal of Immunology, 2004, 172(6): 3948
[5] [5] QIAN M X, PANG Y, LIU C H, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis[J]. Cell, 2013, 153(5): 1012
[6] [6] ROSENZWEIG R, OSMULSKI P A, GACZYNSKA M, et al. The central unit within the 19S regulatory particle of the proteasome[J]. Nature Structural & Molecular Biology, 2008, 15(6): 573
[7] [7] HUSNJAK K, ELSASSER S, ZHANG N X, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor[J]. Nature, 2008, 453(7194): 481
[8] [8] SHI Y, CHEN X, ELSASSER S, et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome[J]. Science, 2016, 351(6275): aad9421
[9] [9] DEVERAUX Q, USTRELL V, PICKART C, et al. A 26 S protease subunit that binds ubiquitin conjugates[J]. Journal of Biological Chemistry, 1994, 269(10): 7059
[10] [10] SAKATA E, BOHN S, MIHALACHE O, et al. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1479
[11] [11] VERMA R, ARAVIND L, OANIA R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]. Science, 2002, 298(5593): 611
[12] [12] YAO T T, COHEN R E. A cryptic protease couples deubiquitination and degradation by the proteasome[J]. Nature, 2002, 419(6905): 403
[13] [13] HANNA J, HATHAWAY N A, TONE Y, et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation[J]. Cell, 2006, 127(1): 99
[14] [14] QIU X B, OUYANG S Y, LI C J, et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, Uch37[J]. The EMBO Journal, 2006, 25(24): 5742
[15] [15] SIMINS A B, WEIGHARDT H, WEIDNER K M, et al. Functional cloning of ARM-1, an adhesion-regulating molecule upregulated in metastatic tumor cells[J]. Clinical & Experimental Metastasis, 1999, 17(8): 641
[16] [16] HAMAZAKI J, IEMURA S I, NATSUME T, et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme Uch37 to 26S proteasomes[J]. The EMBO Journal, 2006, 25(19): 4524
[17] [17] JRGENSEN J P, LAURIDSEN A M, KRISTENSEN P, et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor[J]. Journal of Molecular Biology, 2006, 360(5): 1043
[18] [18] YAO T T, SONG L, XU W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1[J]. Nature Cell Biology, 2006, 8(9): 994
[19] [19] CHEN X, LEE B H, FINLEY D, et al. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2[J]. Molecular Cell, 2010, 38(3): 404
[20] [20] BERKO D, HERKON O, BRAUNSTEIN I, et al. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor Rpn13[J]. Journal of Biological Chemistry, 2014, 289(9): 5609
[21] [21] CHERIX N, FROQUET R, CHARETTE S J, et al. A Phg2-Adrm1 pathway participates in the nutrient-controlled developmental response inDictyostelium[J]. Molecular Biology of the Cell, 2006, 17(12): 4982
[22] [22] AL-SHAMI A, JHAVER K G, VOGEL P, et al. Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development[J]. Plos One, 2010, 5(10): e13654
[23] [23] AGUILETA M A, KORAC J, DURCAN T M, et al. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13[J]. Journal of Biological Chemistry, 2015, 290(12): 7492
[24] [24] YANG X, MIAO X Y, WEN Y, et al. A possible connection between adhesion regulating molecule 1 overexpression and nuclear factor kappa B activity in hepatocarcinogenesis[J]. Oncology Reports, 2012, 28(1): 283
[25] [25] SONG Y, RAY A, LI S, et al. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma[J]. Leukemia, 2016, 30(9): 1877
[26] [26] FEJZO M S, ANDERSON L, VON EUW E M, et al. Amplification target ADRM1: role as an oncogene and therapeutic target for ovarian cancer[J]. International Journal of Molecular Sciences, 2013, 14(2): 3094
[27] [27] CARVALHO B, POSTMA C, MONGERA S, et al. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression[J]. Gut, 2009, 58(1): 79
[28] [28] JANG S H, PARK J W, KIM H R, et al.ADRM1gene amplification is a candidate driver for metastatic gastric cancers[J]. Clinical & Experimental Metastasis, 2014, 31(6): 727
[29] [29] ANCHOORI R K, KARANAM B, PENG S W, et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer[J]. Cancer Cell, 2013, 24(6): 791
[30] [30] TRADER D J, SIMANSKI S, KODADEK T. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor Rpn13 is toxic to multiple myeloma cells[J]. Journal of the American Chemical Society, 2015, 137(19): 6312
[31] [31] KHAN M L, STEWART A K. Carfilzomib: a novel second-generation proteasome inhibitor[J]. Future Oncology, 2011, 7(5): 607
[32] [32] RICHARDSON P G, XIE W L, MITSIADES C, et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy[J]. Journal of Clinical Oncology, 2009, 27(21): 3518
[33] [33] WANG J, WU X S, DAI W Y, et al. The CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of gastric cancer[J]. Cancer Letters, 2020, 482: 90
[34] [34] DEL ROSARIO B C, KRIZ A J, DEL ROSARIO A M, et al. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition[J]. eLife, 2019, 8: e42341
[35] [35] DONOHOE M E, ZHANG L F, XU N, et al. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch[J]. Molecular Cell, 2007, 25(1): 43
[36] [36] KLENOVA E M, CHERNUKHIN I V, EL-KADY A, et al. Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF[J]. Molecular and Cellular Biology, 2001, 21(6): 2221
[37] [37] MACPHERSON M J, BEATTY L G, ZHOU W J, et al. The CTCF insulator protein is posttranslationally modified by SUMO[J]. Molecular and Cellular Biology, 2009, 29(3): 714
[38] [38] WANG H, MAURANO M T, QU H Z, et al. Widespread plasticity in CTCF occupancy linked to DNA methylation[J]. Genome Research, 2012, 22(9): 1680
[39] [39] CALISSI G, LAM E W F, LINK W. Therapeutic strategies targeting FOXO transcription factors[J]. Nature Reviews Drug Discovery, 2021, 20(1): 21
[40] [40] MYATT S S, LAM E W F. The emerging roles of forkhead box (Fox) proteins in cancer[J]. Nature Reviews Cancer, 2007, 7(11): 847
[41] [41] LEE J W, NAM H, KIM L E, et al. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia[J]. Autophagy, 2019, 15(5): 753
[42] [42] ZHAO M M, GAO J L, CUI C M, et al. Inhibition of PTEN ameliorates secondary hippocampal injury and cognitive deficits after intracerebral hemorrhage: involvement of AKT/FoxO3a/ATG-mediated autophagy[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021(1): 5472605
[43] [43] HUANG Y P, LIU H, GUO R Z, et al. Long non-coding RNA FER1L4 mediates the autophagy of periodontal ligament stem cells under orthodontic compressive force via AKT/FOXO3 pathway[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 631181
[44] [44] KELLY D P, SCARPULLA R C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes & Development, 2004, 18(4): 357
[45] [45] SCARPULLA R C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator[J]. Annals of the New York Academy of Sciences, 2008, 1147(1): 321
[46] [46] SCARPULLA R C. Nuclear control of respiratory gene expression in mammalian cells[J]. Journal of Cellular Biochemistry, 2006, 97(4): 673
[47] [47] ZHOU Y S, XU Z J, QUAN D, et al. Nuclear respiratory factor 1 promotes spheroid survival and mesenchymal transition in mammary epithelial cells[J]. Oncogene, 2018, 37: 6152
[48] [48] TANG Z F, KANG B X, LI C W, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Research, 2019, 47(W1): W556
[49] [49] HUANG Y P, RATOVITSKI E A. Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation[J]. Journal of Biological Chemistry, 2010, 285(53): 41422
[50] [50] NING Z P, WU Z W, ZHANG F, et al. GMEB2 promotes the growth of colorectal cancer by activating ADRM1 transcription and NF-B signalling and is positively regulated by the m6 A reader YTHDF1[J]. Cancers, 2022, 14(24): 6046
[51] [51] RIVERO-HINOJOSA S, PUGACHEVA E M, KANG S, et al. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis[J]. Nature Communications, 2021, 12(1): 3846
Get Citation
Copy Citation Text
JIN Zhenhui, FAN Libin, JIANG Tianxia, QIU Xiaobo. Regulatory mechanism of transcriptional repression of proteasomal ubiquitin receptor Rpn13[J]. Journal of Beijing Normal University, 2025, 61(3): 324
Received: Mar. 28, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: QIU Xiaobo (xqiu@bnu.edu.cn)