Acta Optica Sinica, Volume. 32, Issue 6, 631002(2012)
Analysis of Optical Performance on Polymer Solar Cell Based on Transfer Matrix Method
[1] [1] Qiu Dongdong, Wang Rui, Cheng Xiang′ai et al.. Mechanisms research on continous wave laser induced damage to solar cells[J]. Chinese J. Lasers, 2011, 38(3): 0302006
[2] [2] Xiong Xicheng, Xie Quan, Yan Wanjun. Study on relation between thickness of β-FeSi2 thin film and solar photon wavelength[J]. Acta Optica Sinica, 2011, 31(5): 0531004
[3] [3] Zhou Zhou, Zhou Jian, Sun Xiaowei et al.. Design of an irregularly shaped DBR for thin film solar cells[J]. Acta Optica Sinica, 2011, 31(7): 0731002
[5] [5] C. J. Barec. Organic photovoltatics technology and market[J]. Sol. Eng. Mater. Sol. Cells, 2004, 83(2-3): 273~292
[6] [6] F. Monestier, J. J. Simon, P. Torchio et al.. Modeling the short circuit current density of polymersolar cells based on P3HTPCBM blend[J]. Sol. Eng. Mater. Sol. Cells, 2007, 9(5): 405~410
[7] [7] G. Yu, J. Gao, J. C. Hummelen et al.. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789~1791
[8] [8] Zhao Xinyan, Mi Baoxiu, Gao Zhiqiang et al.. Recent progress in the numerical modelling for organic thin film solar cells[J]. Sci. China Phys. Mech. Astron., 2011, 54(3): 375~387
[9] [9] D. Gilles, F. Karen, A. Tayebeh et al.. Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence[J]. J. Appl. Phys., 2007, 102(12): 123109
[10] [10] M. Niggemann, M. Glatthaar, P. Lewer et al.. Functional microprism substrate for organic solar cells[J]. Thin Solid Films, 2006, 511(26): 628~633
[11] [11] D. Gilles, F. Karen, C. Markus et al.. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells[J]. J. Appl. Phys., 2007, 102(5): 054516
[12] [12] L. A. Pettersson, L. S. Roman, O. Ingana. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films[J]. J. Appl. Phys., 1999, 86(1): 487~496
[13] [13] Gui Yuchang, Wen Shangsheng, Zhang Jianping et al.. Analysis of light out-coupling efficiency in top-emitting polymer light-emitting devices[J]. Acta Optica Sinica, 2011, 31(6): 0631002
[14] [14] A. J. Moule, K. Meerholz. Minimizing optical losses in bulk heterojunction polymer solar cells[J]. Appl. Phys. B, 2007, 86(4): 721~727
[15] [15] J. S. Kim, R. H. Friend, F. Cacialli. Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium-tin-oxide anodes[J]. Appl. Phys. Lett., 1999, 74(21): 3084~3086
[16] [16] M. P. de Jong, L. J. van lJzendoorn, M. J. A. de Voigt. Stability of the interface between indium-tin-oxide and poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett., 2000, 77(14): 2255~2257
[17] [17] Y. Sahin, S. Alem, R. de Bettignies et al.. Development of air stable polymer solar cells using an inverted gold on top anode structure[J]. Thin Solid Films, 2005, 476(2): 340~343
[18] [18] G. Li, C. W. Chu, V. Shrotriya et al.. Efficient inverted polymer solar cells[J]. Appl. Phys. Lett., 2006, 88(25): 253503~253505
[19] [19] Huang Jinsong, Li Gang, Yang Yang. Influence of composition and heat-treatment on the charge transport properties of poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends[J]. Appl. Phys. Lett., 2005, 87(11): 112105
[20] [20] Y. J. Lee, W. T. Nichols, D. G. Kim et al.. Chemical vapour transport synthesis and optical characterization of MoO3 thin films[J]. J. Phys. D., 2009, 42(11): 115419
[21] [21] J. R. Tumbleston, D. H. Ko, T. Samulski. Edward et al.. Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer[J]. Appl. Phys. Lett., 2009, 94(4): 043305
[22] [22] E. Istrate, E. H. Sargent.. Measurement of the phase shift upon reflection from photonic crystals[J]. Appl. Phys. Lett., 2005, 86(15): 151112
[23] [23] S. -B. Rim, S. Zhao, S. R. Scully et al.. An effective light trapping configuration for thin-film solar cells[J]. Appl. Phys. Lett., 2007, 91(24): 243501
[24] [24] Zhou Yinhua, Zhang Fengling, K. Tvingstedt et al.. Multifolded polymer solar cells on flexible substrates[J]. Appl. Phys. Lett., 2008, 93(3): 033302
[25] [25] V. Andersson, K. Tvingstedt, W. Tian et al.. Optical modeling of a folded organic solar cell[J]. J. Appl. Phys., 2008, 103(9): 094520
[26] [26] D. Cheyns, B. P. Rand, B. Verreet et al.. The angular response of ultrathin film organic solar cells[J]. Appl. Phys. Lett., 2008, 92(24): 243310
[27] [27] A. Meyer, H. Ade. The effect of angle of incidence on the optical field distribution within thin film organic solar cells[J]. J. Appl. Phys., 2009, 106(11): 113101
[28] [28] Wei Guanghui, Yan Jixiang. Matrix Optics [M]. Beijing: Weapon Industry Press, 1995. 216~218
[29] [29] H. K. Kim, S. H. Cho, J. R. Oh et al.. Deep blue, efficient, moderate microcavity organic light-emitting diodes[J]. Organic Electronics, 2010, 11(1): 137~145
[30] [30] Cho Sang-Hwan, Song Young-Woo, Lee Joon-gu et al.. Weak-microcavity organic light-emitting diodes with improved light out-coupling[J]. Opt. Express, 2008, 16(17): 12632~12639
[31] [31] Chen Fang-Chung, Wu Jyh-Lih, Hung Yi. Spatial redistribution of the optical field intensity in inverted polymer solar cells[J]. Appl. Phys. Lett., 2010, 96(19): 193304
Get Citation
Copy Citation Text
Li Xiang, Wen Shangsheng, Yao Rihui, Chen Dongcheng, Gui Yuchang. Analysis of Optical Performance on Polymer Solar Cell Based on Transfer Matrix Method[J]. Acta Optica Sinica, 2012, 32(6): 631002
Category: Thin Films
Received: Nov. 15, 2011
Accepted: --
Published Online: May. 4, 2012
The Author Email: Xiang Li (lxscut@163.com)