Journal of Inorganic Materials, Volume. 35, Issue 9, 972(2020)
[6] JOUANNEAU S, MACNEIL D D, LU Z. Morphology and safety of Li[Ni
[8] KIM J, LEE H, CHA H. Nickel-rich cathodes: prospect and reality of Ni-rich cathode for commercialization[J]. Adv. Energy Mater, 8, 1702028(2018).
[9] XIONG X H, WANG Z X, YUE P. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries[J]. J. Power Sources, 222, 318-325(2013).
[10] XU S, WANG X, ZHANG W. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials[J]. J. Solid State Ionics, 334, 105-110(2019).
[13] MYUNG S T, IZUMI K, KOMABA S. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J]. Chem. Mater, 17, 3695-3704(2005).
[14] YU H J, QIAN Y M, OTANI M. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations[J]. Energy Environ. Sci, 7, 1068-1078(2014).
[15] AURBACH D. Electrode-solution interactions in Li-ion batteries: a short summary and new insights[J]. J. Power Sources, 497-503(2003).
[16] MYUNG S T, AMINE K, SUN Y K. Surface modification of cathode materials from nano- to microscale for rechargeable lithium- ion batteries[J]. J. Mater. Chem, 20, 7074-7095(2010).
[17] YOON W S, HANSON J, MCBREEN J. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD[J]. Electrochem.Commun, 8, 859-862(2006).
[20] JUNG S K, GWON H, HONG J. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater, 4, 1300787(2014).
[22] MANTHIRAM A, KNIGHT J C, MYUNG S T. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives[J]. Adv. Energy Mater, 6, 1501010(2016).
[23] CHEN Z, CHAO D, LIN J. Recent progress in surface coating of layered LiNi
[26] AURBACH D.
[28] LI J, LIU H, XIA J. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes[J]. J. Electrochem. Soc, 164, A655-A665(2017).
[31] VETTER J, NOVAK P, WAGNER M R. Ageing mechanisms in lithium-ion batteries[J]. J. Power Sources, 147, 269-281(2005).
[32] AURBACH D, MARKOVSKY B, SALITRA G. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries[J]. J. Power Sources, 165, 491-499(2007).
[33] LIANG L W, HU G R, JIANG F. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method[J]. J. Alloys Compd, 657, 570-581(2016).
[35] LI Y P, YAN G J, LUO L M. Enhanced electrochemical performance of LiNi0.4Co0.2Mn0.4O2 cathode materials
[36] LOGHAVI M M, MOHAMMADI-MANESH H, EQRA R. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries[J]. J Solid State Electrochem, 23, 2569-2578(2019).
[38] ZUO D X, WANG C P, TIAN G L. Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology[J]. J. Electrochem. Sci. Eng, 9, 85-97(2019).
[39] ZHU W C, HUANG X, LIU T T. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges[J]. Coatings, 9, 92(2019).
[41] CUI X L, AI L, MAO L P. Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer[J]. Ionics, 25, 411-419(2019).
[43] LEE S H, YOON C S, AMINE K. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. J. Power Sources, 234, 201-207(2013).
[45] HAN B L, LU X C. Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction and corrosion behavior of Ni-W composite coatings[J]. Surf. Coat. Technol, 203, 3656-3660(2009).
[46] KUMAR D A, SELVASEKARAPANDIAN S, NITHYA H. Structural and conductivity analysis on cerium fluoride nanoparticles prepared by sonication assisted method[J]. Solid State Sci, 14, 626-634(2012).
[47] KUMAR D A, SELVASEKARAPANDIAN S, NITHYA H. Influence of substrate temperature on CeF3 thin films prepared by thermal evaporation[J]. Mater. Chem. Phys, 143, 765-772(2014).
[49] SONG H G, KIM S B, PARK Y J. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2[J]. J. Electroceram, 29, 163-169(2012).
[50] DAI S C, YAN G J, WANG L. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material
[53] JO C H, CHO D H, NOH H J. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer[J]. Nano Res, 8, 1464-1479(2015).
[54] ZHU J, LI Y J, XUE L L. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material
[55] FAN Q L, YANG S D, LIU J. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries[J]. J. Power Sources, 421, 91-99(2019).
[56] BAN L Q, YIN Y P, ZHUANG W D. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation[J]. Electrochim. Acta, 180, 218-226(2015).
[58] XU S, DU C Y, XU X. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries[J]. Electrochim. Acta, 248, 534-540(2017).
[59] HE X S, HAN G K, LOU S F. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by coating of graphene nanodots[J]. J. Electrochem. Soc, 166, A1038-A1044(2019).
[66] ZHANG S S, FAN X L, WANG C S. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive[J]. ChemElectroChem, 6, 1536-1541(2019).
[67] LI J, DOWNIE L E, MA L. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries[J]. J. Electrochem. Soc, 162, A1401-A1408(2015).
[70] PENG Z J, YANG G W, LI F Q. Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5
[71] LEE S W, KIM M S, JEONG J H. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance[J]. J. Power Sources, 360, 206-214(2017).
[72] KIM S B, LEE K J, CHOI W J. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4[J]. J. Solid State Electrochem, 14, 919-922(2010).
[74] ZHU L, YAN T F, JIA D. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells[J]. J. Electrochem. Soc, 166, A5437-A5444(2019).
[75] KIM W S, KIM S B, JANG I C. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4[J]. J. Alloys Compd, 492, L87-L90(2010).
[76] DIAO R J, NAYAKA G P, ZHU C Y. CePO4 coated LiNi0.6Co0.2Mn0.2O2 as cathode material and its electrochemical performance[J]. Int. J. Electrochem. Sci, 14, 8070-8079(2019).
[78] LIU W M, HU G R, DU K. Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method[J]. Surf. Coat. Tech, 216, 267-272(2013).
[80] LIU W M, HU G R, DU K. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2[J]. J. Power Sources, 230, 201-206(2013).
[84] HASHIGAMI S, YOSHIMI K, KATO Y. Improvement of cycleability and rate-capability of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with lithium boron oxide by an antisolvent precipitation method[J]. ChemistrySelect, 4, 8676-8681(2019).
[85] ZHANG J Y, CAO Y, OU X. Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2
[87] HE X S, XU X, WANG L G. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material
[90] BHUVANESWARI D, BABU G, KALAISELVI N. Effect of surface modifiers in improving the electrochemical behavior of LiNi0.4Mn0.4Co0.2O2 cathode[J]. Electrochim. Acta, 109, 684-693(2013).
[91] WANG D, LI X H, WANG Z X. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Electrochim. Acta, 188, 48-56(2016).
[92] POUILLERIE C, CROGUENNEC L, BIENSAN P. Synthesis and characterization of new LiNi1-
[93] XIE Q, LI W D, MANTHIRAM A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chem. Mater, 31, 938-946(2019).
[97] WOO S U, PARK B C, YOON C S. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution[J]. J. Electrochem. Soc, 154, A649-A655(2007).
[98] LI C L, KAN W H, XIE H L. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability[J]. Adv. Sci, 6, 1801406(2019).
[99] LI X, XIE Z W, LIU W J. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2[J]. Electrochim. Acta, 174, 1122-1130(2015).
[101] YANG Z G, XIANG W, WU Z G. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Ceram. Int, 43, 3866-3872(2017).
[102] WU J F, LIU H G, YE X H. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery[J]. J. Alloys Compd, 644, 223-227(2015).
[103] BREGER J, MENG Y S, HINUMA Y. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study[J]. Chem. Mater, 18, 4768-4781(2006).
[104] SCHIPPER F, DIXIT M, KOVACHEVA D. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. J. Mater. Chem. A, 4, 16073-16084(2016).
[107] DU R, BI Y, YANG W. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2
[108] PARK S H, OH S W, SUN, Y K. Synthesis and structural characterization of layered Li[Ni1/3+
[109] YANG J, XIA Y Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3[J]. ACS Appl. Mater. Interfaces, 8, 1297-1308(2016).
[113] XIAO P H, DENG Z Q, MANTHIRAM A. Calculations of oxygen stability in lithium-rich layered cathodes[J]. J. Phys. Chem. C, 116, 23201-23204(2012).
[114] AURBACH D, SRUR-LAVI O, GHANTY C. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics[J]. J. Electrochem. Soc, 162, A1014-A1027(2015).
[115] KIM U H, JUN D W, PARK K J. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy Environ. Sci, 11, 1271-1279(2018).
[119] XIANG W, ZHU C Q, ZHANG J. Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery[J]. J. Alloys Compd, 786, 56-64(2019).
[120] HU G, ZHANG M, LIANG L. Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage[J]. Electrochim. Acta, 190, 264-275(2016).
[121] CHANG S H, CHEN Y X, LI Y J. Improvement of the high-voltage electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2@ZrO2 cathode materials with liquid phase modification[J]. J. Alloys Compd, 781, 496-503(2019).
[122] LI X, ZHANG K J, WANG M S. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustain. Energ. Fuels, 2, 413-421(2018).
Get Citation
Copy Citation Text
Xiangtao BAI, Liqing BAN, Weidong ZHUANG.
Category: REVIEW
Received: Nov. 7, 2019
Accepted: --
Published Online: Mar. 3, 2021
The Author Email: